22 research outputs found

    Elevating the level of Cdc34/Ubc3 ubiquitin-conjugating enzyme in mitosis inhibits association of CENP-E with kinetochores and blocks the metaphase alignment of chromosomes

    Get PDF
    Cdc34/Ubc3 is a ubiquitin-conjugating enzyme that functions in targeting proteins for proteasome-mediated degradation at the G1 to S cell cycle transition. Elevation of Cdc34 protein levels by microinjection of bacterially expressed Cdc34 into mammalian cells at prophase inhibited chromosome congression to the metaphase plate with many chromosomes remaining near the spindle poles. Chromosome condensation and nuclear envelope breakdown occurred normally, and chromosomes showed oscillatory movements along mitotic spindle microtubules. Most injected cells arrested in a prometaphase-like state. Kinetochores, even those of chromosomes that failed to congress, possessed the normal trilaminar plate ultrastructure. The elevation of Cdc34 protein levels in early mitosis selectively blocked centromere protein E (CENP-E), a mitotic kinesin, from associating with kinetochores. Other proteins, including two CENP-E–associated proteins, BubR1 and phospho-p42/p44 mitogen-activated protein kinase, and mitotic centromere-associated kinesin, cytoplasmic dynein, Cdc20, and Mad2, all exhibited normal localization to kinetochores. Proteasome inhibitors did not affect the prometaphase arrest induced by Cdc34 injection. These studies suggest that CENP-E targeting to kinetochores is regulated by ubiquitylation not involving proteasome-mediated degradation

    Aurora Kinase Inhibitor ZM447439 Blocks Chromosome-induced Spindle Assembly, the Completion of Chromosome Condensation, and the Establishment of the Spindle Integrity Checkpoint in Xenopus Egg Extracts

    No full text
    The Aurora family kinases contribute to accurate progression through several mitotic events. ZM447439 (“ZM”), the first Aurora family kinase inhibitor to be developed and characterized, was previously found to interfere with the mitotic spindle integrity checkpoint and chromosome segregation. Here, we have used extracts of Xenopus eggs, which normally proceed through the early embryonic cell cycles in the absence of functional checkpoints, to distinguish between ZM's effects on the basic cell cycle machinery and its effects on checkpoints. ZM clearly had no effect on either the kinetics or amplitude in the oscillations of activity of several key cell cycle regulators. It did, however, have striking effects on chromosome morphology. In the presence of ZM, chromosome condensation began on schedule but then failed to progress properly; instead, the chromosomes underwent premature decondensation during mid-mitosis. ZM strongly interfered with mitotic spindle assembly by inhibiting the formation of microtubules that are nucleated/stabilized by chromatin. By contrast, ZM had little effect on the assembly of microtubules by centrosomes at the spindle poles. Finally, under conditions where the spindle integrity checkpoint was experimentally induced, ZM blocked the establishment, but not the maintenance, of the checkpoint, at a point upstream of the checkpoint protein Mad2. These results show that Aurora kinase activity is required to ensure the maintenance of condensed chromosomes, the generation of chromosome-induced spindle microtubules, and activation of the spindle integrity checkpoint

    Changes in Regulatory Phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during Normal Cell Cycle Progression and Checkpoint Arrests

    No full text
    Entry into mitosis is catalyzed by cdc2 kinase. Previous work identified the cdc2-activating phosphatase cdc25C and the cdc2-inhibitory kinase wee1 as targets of the incomplete replication-induced kinase Chk1. Further work led to the model that checkpoint kinases block mitotic entry by inhibiting cdc25C through phosphorylation on Ser287 and activating wee1 through phosphorylation on Ser549. However, almost all conclusions underlying this idea were drawn from work using recombinant proteins. Here, we report that in the early Xenopus egg cell cycles, phosphorylation of endogenous cdc25C Ser287 is normally high during interphase and shows no obvious increase after checkpoint activation. By contrast, endogenous wee1 Ser549 phosphorylation is low during interphase and increases after activation of either the DNA damage or replication checkpoints; this is accompanied by a slight increase in wee1 kinase activity. Blocking mitotic entry by adding the catalytic subunit of PKA also results in increased wee1 Ser549 phosphorylation and maintenance of cdc25C Ser287 phosphorylation. These results argue that in response to checkpoint activation, endogenous wee1 is indeed a critical responder that functions by repressing the cdc2-cdc25C positive feedback loop. Surprisingly, endogenous wee1 Ser549 phosphorylation is highest during mitosis just after the peak of cdc2 activity. Treatments that block inactivation of cdc2 result in further increases in wee1 Ser549 phosphorylation, suggesting a previously unsuspected role for wee1 in mitosis
    corecore