2,011 research outputs found

    Can CP-violation be observed in heavy-ion collisions?

    Get PDF
    We demonstrate that, at least at present, there is no convincing way to detect CP-violation in heavy-ion collisions.Comment: 3 pages, 1 figure; reference added, misprint correcte

    Analytic Model of the Universal Structure of Turbulent Boundary Layers

    Full text link
    Turbulent boundary layers exhibit a universal structure which nevertheless is rather complex, being composed of a viscous sub-layer, a buffer zone, and a turbulent log-law region. In this letter we present a simple analytic model of turbulent boundary layers which culminates in explicit formulae for the profiles of the mean velocity, the kinetic energy and the Reynolds stress as a function of the distance from the wall. The resulting profiles are in close quantitative agreement with measurements over the entire structure of the boundary layer, without any need of re-fitting in the different zones.Comment: 5 pages, 4 figs, JETP Letters, submitted. Comparison with the latest DNS dat

    Evolution of thick domain walls in inflationary and p=wρp=w\rho universe

    Full text link
    We study the evolution of thick domain walls in the different models of cosmological inflation, in the matter-dominated and radiation-dominated universe, or more generally in the universe with the equation of state p=wρp=w\rho. We have found that the domain wall evolution crucially depends on the time-dependent parameter C(t)=1/(H(t)δ0)2C(t)=1/(H(t)\delta_0)^2, where H(t)H(t) is the Hubble parameter and δ0\delta_0 is the thickness of the wall in flat space-time. For C(t)>2C(t)>2 the physical thickness of the wall, a(t)δ(t)a(t)\delta(t), tends with time to δ0\delta_0, which is microscopically small. Otherwise, when C(t)2C(t) \leq 2, the wall steadily expands and can grow up to a cosmologically large size.Comment: 15 pages, 9 figure
    corecore