470 research outputs found

    Mammalian Models of Traumatic Brain Injury and a Place for Drosophila in TBI Research

    Get PDF
    Traumatic brain injury (TBI), caused by a sudden blow or jolt to the brain that disrupts normal function, is an emerging health epidemic with ∼2.5 million cases occurring annually in the United States that are severe enough to cause hospitalization or death. Most common causes of TBI include contact sports, vehicle crashes and domestic violence or war injuries. Injury to the central nervous system is one of the most consistent candidates for initiating the molecular and cellular cascades that result in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Not every TBI event is alike with effects varying from person to person. The majority of people recover from mild TBI within a short period of time, but repeated incidents can have deleterious long-lasting effects which depend on factors such as the number of TBIs sustained, time till medical attention, age, gender and genetics of the individual. Despite extensive research, many questions still remain regarding diagnosis, treatment, and prevention of long-term effects from TBI as well as recovery of brain function. In this review, we present an overview of TBI pathology, discuss mammalian models for TBI and focus on current methods using Drosophila melanogaster as a model for TBI study. The relatively small brain size (∼100,000 neurons and glia), conserved neurotransmitter signaling mechanisms and sophisticated genetics of Drosophila allows for cell biological, molecular and genetic analyses that are impractical in mammalian models of TBI

    10 Years of Toxicogenomics section in Frontiers in Genetics: Past discoveries and Future Perspectives

    Get PDF
    The Frontiers Media family has over 200 journals, which are each headed by usually one Field Chief Editor, and several specialty sections, which are each headed by one or more Specialty Chief Editors. The year 2021 was the 10th anniversary of the founding of the Frontiers in Genetics journal and the Frontiers in Toxicogenomics specialty section of this journal. In 2021, we also announce one of the newest of the Frontiers journals–Frontiers in Toxicology which is part of the Frontiers Media family of journals but independent of Frontiers in Genetics. The Specialty Chief Editor of Toxicogenomics, and one of 26 Specialty Chief Editors of Frontiers in Genetics, is Dr. Ruden. As of 2021, Toxicogenomics has published over 138 articles and has over 370 Editors including 90 Associate Editors and 280 Review Editors. The Frontiers in Genetics impact factor was initially approximately 2.5 when it was first listed in PubMed in 2015 and has risen steadily to its current value of 4.8, which is typical for the majority of the over 200 Frontiers journals that have established impact factors. In this overview of the first decade of Toxicogenomics section, we discuss the top 5 articles with the highest Scopus citations, which were all written in the first few years of the journal. The article with the highest number of citations, with 353 Scopus over 600 Google Scholar citations, and the highest average number of citations (67) that steadily increased from 10 citations in 2013 to 119 citations in 2021, was written in 2012 by Dr. Ruden’s laboratory and titled, “Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift.” The five most influential authors who published in the journal in the past 10 years based on Scopus citations of a particular paper are Dr. Ruden’s laboratory, with 353 Scopus citations for the SnpSift paper mentioned above; Drs. Brock Christensen and Carmen J. Marsit, with 86 Scopus citations for their review, “Epigenomics in environmental health”; Dr. Michael Aschner and colleagues, with 61 Scopus citations for their paper “Genetic factors and manganese-induced neurotoxicity”; and Dr. Sandra C. dos Santos and colleagues, with 59 Scopus citations for their paper, “Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology.” While the top 5 papers were published in the early years of the journal, we will also discuss a more recent article published in 2018 on a comparison of RNA-seq and microarray methods by Dr. Michael Liguori’s laboratory, “Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies”, that far exceeds the number of downloads and views of all the other articles published in the first 10 years of the journal and will likely be a top cited paper in the second decade highlights of this journal. Finally, we discuss where the Toxicogenomics specialty section will go to advance the field of toxicogenomics, and more generally, toxicology, in the future

    Lead Modulates trans- and cis-Expression Quantitative Trait Loci (eQTLs) in Drosophila melanogaster Heads

    Get PDF
    Lead exposure has long been one of the most important topics in global public health because it is a potent developmental neurotoxin. Here, an eQTL analysis, which is the genome-wide association analysis of genetic variants with gene expression, was performed. In this analysis, the male heads of 79 Drosophila melanogaster inbred lines from Drosophila Synthetic Population Resource (DSPR) were treated with or without developmental exposure, from hatching to adults, to 250 μM lead acetate [Pb(C2H3O2)2]. The goal was to identify genomic intervals that influence the gene-expression response to lead. After detecting 1798 cis-eQTLs and performing an initial trans-eQTL analysis, we focused our analysis on lead-sensitive “trans-eQTL hotspots,” defined as genomic regions that are associated with a cluster of genes in a lead-dependent manner. We noticed that the genes associated with one of the 14 detected trans-eQTL hotspots, Chr 2L: 6,250,000 could be roughly divided into two groups based on their differential expression profile patterns and different categories of function. This trans-eQTL hotspot validates one identified in a previous study using different recombinant inbred lines. The expression of all the associated genes in the trans-eQTL hotspot was visualized with hierarchical clustering analysis. Besides the overall expression profile patterns, the heatmap displayed the segregation of differential parental genetic contributions. This suggested that trans-regulatory regions with different genetic contributions from the parental lines have significantly different expression changes after lead exposure. We believe this study confirms our earlier study, and provides important insights to unravel the genetic variation in lead susceptibility in Drosophila model

    Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields

    Full text link
    A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures is presented. The nonlinear dependence of the capacitance on the gate voltage and in-plane magnetic field is discussed together with the capacitance quantum steps connected with a population of higher 2D gas subbands. The results of full self-consistent numerical calculations are compared to recent experimental data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file available upon request. Phys. Rev.B, in pres

    Waddington’s Widget: Hsp90 and the Inheritance of Acquired Characters

    Get PDF
    Conrad Waddington published an influential model for evolution in his 1942 paper, Canalization of Development and Inheritance of Acquired Characters. In this classic, albeit controversial, paper, he proposed that an unknown mechanism exists that conceals phenotypic variation until the organism is stressed. Recent studies have proposed that the highly conserved chaperone Hsp90 could function as a “capacitor,” or an “adaptively inducible canalizer,” that masks silent phenotypic variation of either genetic or epigenetic origin. This review will discuss evidence for, and arguments against, the role of Hsp90 as a capacitor for morphological evolution, and as a key component of what we call “Waddington’s widget.

    Reduction of leukocyte microvascular adherence and preservation of blood-brain barrier function by superoxide-lowering therapies in a piglet model of neonatal asphyxia

    Get PDF
    Background: Asphyxia is the most common cause of brain damage in newborns. Substantial evidence indicates that leukocyte recruitment in the cerebral vasculature during asphyxia contributes to this damage. We tested the hypothesis that superoxide radical (O2⋅_) promotes an acute post-asphyxial inflammatory response and blood-brain barrier (BBB) breakdown. We investigated the effects of removing O2⋅_ by superoxide dismutase (SOD) or C3, the cell-permeable SOD mimetic, in protecting against asphyxia-related leukocyte recruitment. We also tested the hypothesis that xanthine oxidase activity is one source of this radical.Methods: Anesthetized piglets were tracheostomized, ventilated, and equipped with closed cranial windows for the assessment of post-asphyxial rhodamine 6G-labeled leukocyte-endothelial adherence and microvascular permeability to sodium fluorescein in cortical venules. Asphyxia was induced by discontinuing ventilation. SOD and C3 were administered by cortical superfusion. The xanthine oxidase inhibitor oxypurinol was administered intravenously.Results: Leukocyte-venular adherence significantly increased during the initial 2 h of post-asphyxial reperfusion. BBB permeability was also elevated relative to non-asphyxial controls. Inhibition of O2⋅_ production by oxypurinol, or elimination of O2⋅_ by SOD or C3, significantly reduced rhodamine 6G-labeled leukocyte-endothelial adherence and improved BBB integrity, as measured by sodium fluorescein leak from cerebral microvessels.Conclusion: Using three different strategies to either prevent formation or enhance elimination of O2⋅_ during the post-asphyxial period, we saw both reduced leukocyte adherence and preserved BBB function with treatment. These findings suggest that agents which lower O2⋅_ in brain may be attractive new therapeutic interventions for the protection of the neonatal brain following asphyxia
    corecore