4 research outputs found

    Scatter correction improves concordance in SPECT MPI with a dedicated cardiac SPECT solid-state camera

    No full text
    Purpose: Correction for photon attenuation and scatter improves image quality with conventional NaI-based gamma cameras but evaluation of these corrections for novel solid-state dedicated cardiac cameras is limited. In this study, we assess the accuracy of dual-energy-window (DEW) scatter correction (SC) applied to clinically acquired 99mTc-tetrofosmin myocardial perfusion images obtained on a dedicated multi-pinhole camera with cadmium-zinc-telluride (CZT) detectors (GE Discovery NM530) compared to DEW scatter-corrected images from our conventional SPECT camera (GE Infinia Hawkeye 4; INF).Methods: A modified DEW SC method was formulated to account for the detection of primary photons in the lower energy window (120 keV ± 5%) with CZT detectors, in addition to estimating the scattered photons detected in the photopeak window (140 keV ± 10%). Phantom experiments were used to estimate the DEW correction parameters. Data from 108 patients, acquired using a standard rest/stress Tc-99m-tetrofosmin SPECT/CT protocol on both cameras, were reconstructed with no correction (NC), attenuation correction (AC), and AC with DEW-SC. Images were compared based on the summed stress/rest/difference scores (SSS/SRS/SDS) calculated by clinical software.Results: The correlation between SSS/SRS for the two cameras was excellent (r ≥ 0.94). The mean difference between cameras was  .1).Conclusions: DEW-SC on the CZT camera was feasible and produced images that are not significantly different from those acquired on the INF camera. Although use of SC on CZT images does increase noise, the resultant noise does not introduce bias relative to the INF camera

    Resolution recovery with 3D PET extravascuclar density imaging

    No full text
    Interpretation of FDG PET images is complicated by partial volume (PV) averaging, a result of cardiac motion and limited scanner resolution. An extravascular (EV) density image, created from the subtraction of a blood pool scan from a transmission scan, can be used for correction of PV averaging. Computer simulations were performed to develop this method. The PSF of the scanner was measured and found to be Gaussian with a FWHM of 9.7 mm. Images were subsequently created through convolution of a true activity distribution with the PSF. The simulations showed that the EV density image could perfectly correct for PV effects, and predicted a value of 0.67 g/cc for the EV image, later validated using a cardiac phantom (0.68 +/- 0.016 g/cc). Measurements on a plastic phantom with a constant myocardial thickness of 10 mm were performed to validate the proposed method. A 32% reduction in myocardial activity was found before correction, significantly less than the true value (p<0.001). Application of the EV density image yielded the true myocardial activity (p=ns) after an artifact inherent to phantom studies was accounted for. These results indicate that PV averaging within the myocardium can be accurately corrected using an EV density image

    Evaluating patient-specific z-score images for lesion detection in low count studies

    No full text
    Despite excellent sensitivity, small target sizes combined with low resolution can lead to weak signals in nuclear medicine imaging. When the signal in a lesion is of the same order of magnitude as the background signal in the blood, it can be difficult to differentiate between lesion and noise. This work evaluates the concept of using patient-specific image noise information to compute a Z-score image to test for lesions with significant signal increases. Image noise is directly evaluated for inclusion in this metric using projection data resampling techniques to obtain replicate images. This approach is evaluated in the context of apoptosis imaging with technetium-99m wherein the signal in arterial voxels is measured relative to the background signal in the blood pool of the superior vena cava. In this preliminary study, the Z-score technique identifies small lesions with greater accuracy than the conventionally used target-to-background ratio (TBR) method

    Synthesis and characterization of 123I-CMICE-013: A potential SPECT myocardial perfusion imaging agent

    No full text
    Coronary artery disease (CAD) is a major cause of death in Canada and the United States. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a useful diagnostic test in the management of patients with CAD. The widely used SPECT MPI agents, 99mTc sestamibi and 99mTc tetrofosmin, exhibit less than ideal pharmacokinetic properties with decreasing uptake with higher flows. 123I has a similar energy as 99mTc, an ideal half life, and is readily available from cyclotrons. The objective of this study was to develop an 123I labeled MPI agent based on rotenone, a mitochondrial complex I inhibitor, as an alternative to currently available SPECT MPI agents. Methods: 123I-CMICE-013 was synthesized by radiolabeling rotenone with 123I in trifluoroacetic acid (TFA) with iodogen as the oxidizing agent at 60 C for 45 min, followed by RP-HPLC purification. The product was formulated in 5% EtOH in 10 mM NaOAc pH 6.5. The inactive analog 127I-CMICE-013 was isolated and characterized by NMR and mass spectrometry, and the structure determined. Micro-SPECT imaging studies were carried out in normal and infarcted rats. Biodistribution studies were performed in normal rats at 2 h (n = 6) and 24 h (n = 8) post injection (p.i.). Results: 123I-CMICE-013 was isolated with >95% radiochemical purity and high specific activity (14.8-111 GBq/μmol; 400-3000 mCi/μmol). Structural analysis showed that rotenone was iodinated at 7′-position, with removal of the 6′,7′-double bond, and addition of a hydroxy group at 6′-position. MicroSPECT images in normal rats demonstrated homogeneous and sustained myocardial uptake with minimal interference from lung and liver. Absent myocardial perfusion was clearly identified in rats with permanent left coronary artery ligation and ischemia-reperfusion injury. In vivo biodistribution studies in normal rats at 2 h p.i. showed significan
    corecore