58 research outputs found
Glutathione s-transferase omega in the lung and sputum supernatants of COPD patients
BACKGROUND: The major contribution to oxidant related lung damage in COPD is from the
oxidant/antioxidant imbalance and possibly impaired antioxidant defence. Glutathione (GSH) is one
of the most important antioxidants in human lung and lung secretions, but the mechanisms
participating in its homeostasis are partly unclear. Glutathione-S-transferase omega (GSTO) is a
recently characterized cysteine containing enzyme with the capability to bind and release GSH in
vitro. GSTO has not been investigated in human lung or lung diseases.
METHODS: GSTO1-1 was investigated by immunohistochemistry and Western blot analysis in 72
lung tissue specimens and 40 sputum specimens from non-smokers, smokers and COPD, in
bronchoalveolar lavage fluid and in plasma from healthy non-smokers and smokers. It was also
examined in human monocytes and bronchial epithelial cells and their culture mediums in vitro.
RESULTS: GSTO1-1 was mainly expressed in alveolar macrophages, but it was also found in airway
and alveolar epithelium and in extracellular fluids including sputum supernatants, bronchoalveolar
lavage fluid, plasma and cell culture mediums. The levels of GSTO1-1 were significantly lower in the
sputum supernatants (p = 0.023) and lung homogenates (p = 0.003) of COPD patients than in nonsmokers.
CONCLUSION: GSTO1-1 is abundant in the alveolar macrophages, but it is also present in
extracellular fluids and in airway secretions, the levels being decreased in COPD. The clinical
significance of GSTO1-1 and its role in regulating GSH homeostasis in airway secretions, however,
needs further investigations
Glutathione S-transferase omega in the lung and sputum supernatants of COPD patients
<p>Abstract</p> <p>Background</p> <p>The major contribution to oxidant related lung damage in COPD is from the oxidant/antioxidant imbalance and possibly impaired antioxidant defence. Glutathione (GSH) is one of the most important antioxidants in human lung and lung secretions, but the mechanisms participating in its homeostasis are partly unclear. Glutathione-S-transferase omega (GSTO) is a recently characterized cysteine containing enzyme with the capability to bind and release GSH <it>in vitro</it>. GSTO has not been investigated in human lung or lung diseases.</p> <p>Methods</p> <p>GSTO1-1 was investigated by immunohistochemistry and Western blot analysis in 72 lung tissue specimens and 40 sputum specimens from non-smokers, smokers and COPD, in bronchoalveolar lavage fluid and in plasma from healthy non-smokers and smokers. It was also examined in human monocytes and bronchial epithelial cells and their culture mediums <it>in vitro</it>.</p> <p>Results</p> <p>GSTO1-1 was mainly expressed in alveolar macrophages, but it was also found in airway and alveolar epithelium and in extracellular fluids including sputum supernatants, bronchoalveolar lavage fluid, plasma and cell culture mediums. The levels of GSTO1-1 were significantly lower in the sputum supernatants (p = 0.023) and lung homogenates (p = 0.003) of COPD patients than in non-smokers.</p> <p>Conclusion</p> <p>GSTO1-1 is abundant in the alveolar macrophages, but it is also present in extracellular fluids and in airway secretions, the levels being decreased in COPD. The clinical significance of GSTO1-1 and its role in regulating GSH homeostasis in airway secretions, however, needs further investigations.</p
Exome Sequencing Reveals a Phenotype Modifying Variant inZNF528in Primary Osteoporosis With aCOL1A2Deletion
We studied a family with severe primary osteoporosis carrying a heterozygous p.Arg8Phefs*14 deletion in COL1A2, leading to haploinsufficiency. Three affected individuals carried the mutation and presented nearly identical spinal fractures but lacked other typical features of either osteogenesis imperfecta or Ehlers-Danlos syndrome. Although mutations leading to haploinsufficiency in COL1A2 are rare, mutations in COL1A1 that lead to less protein typically result in a milder phenotype. We hypothesized that other genetic factors may contribute to the severe phenotype in this family. We performed whole-exome sequencing in five family members and identified in all three affected individuals a rare nonsense variant (c.1282C > T/p.Arg428*, rs150257846) in ZNF528. We studied the effect of the variant using qPCR and Western blot and its subcellular localization with immunofluorescence. Our results indicate production of a truncated ZNF528 protein that locates in the cell nucleus as per the wild-type protein. ChIP and RNA sequencing analyses on ZNF528 and ZNF528-c.1282C > T indicated that ZNF528 binding sites are linked to pathways and genes regulating bone morphology. Compared with the wild type, ZNF528-c.1282C > T showed a global shift in genomic binding profile and pathway enrichment, possibly contributing to the pathophysiology of primary osteoporosis. We identified five putative target genes for ZNF528 and showed that the expression of these genes is altered in patient cells. In conclusion, the variant leads to expression of truncated ZNF528 and a global change of its genomic occupancy, which in turn may lead to altered expression of target genes. ZNF528 is a novel candidate gene for bone disorders and may function as a transcriptional regulator in pathways affecting bone morphology and contribute to the phenotype of primary osteoporosis in this family together with the COL1A2 deletion. (c) 2020 The Authors.Journal of Bone and Mineral Researchpublished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Peer reviewe
Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway
In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI) catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding). However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI) and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10−5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding – differential affinity, rapid ligand exchange and conformational flexibility
Recommended from our members
The power of popular publicity: new social media and the affective dynamics of the sport racism scandal
Sociologists have tended to take insufficient account of the importance of emotions to the social power of the institution of media, particularly as altered by the emergence of social media in the current media ecology. This paper compensates for this neglect by means of a brief illustrative case study of the effect of social media on the public reception of the 2011 Sepp Blatter racism scandal and of other ‘race-related’ scandals in the UK. In proposing media scandals’ wider sociological significance regarding the dynamic, multi-accented relationships between emotions and power, it analyses how England’s prevailing climate of ‘postcolonial guilt’ was reinforced and conveyed through social media networks
Low Cost Tuberculosis Vaccine Antigens in Capsules: Expression in Chloroplasts, Bio-Encapsulation, Stability and Functional Evaluation In Vitro
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long-term storage at room temperature. To our knowledge, this is the first report of expression of TB vaccine antigens in chloroplasts
Symptom-based stratification of patients with primary Sjögren's syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials
Background
Heterogeneity is a major obstacle to developing effective treatments for patients with primary Sjögren's syndrome. We aimed to develop a robust method for stratification, exploiting heterogeneity in patient-reported symptoms, and to relate these differences to pathobiology and therapeutic response.
Methods
We did hierarchical cluster analysis using five common symptoms associated with primary Sjögren's syndrome (pain, fatigue, dryness, anxiety, and depression), followed by multinomial logistic regression to identify subgroups in the UK Primary Sjögren's Syndrome Registry (UKPSSR). We assessed clinical and biological differences between these subgroups, including transcriptional differences in peripheral blood. Patients from two independent validation cohorts in Norway and France were used to confirm patient stratification. Data from two phase 3 clinical trials were similarly stratified to assess the differences between subgroups in treatment response to hydroxychloroquine and rituximab.
Findings
In the UKPSSR cohort (n=608), we identified four subgroups: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant with fatigue (DDF), and pain dominant with fatigue (PDF). Significant differences in peripheral blood lymphocyte counts, anti-SSA and anti-SSB antibody positivity, as well as serum IgG, κ-free light chain, β2-microglobulin, and CXCL13 concentrations were observed between these subgroups, along with differentially expressed transcriptomic modules in peripheral blood. Similar findings were observed in the independent validation cohorts (n=396). Reanalysis of trial data stratifying patients into these subgroups suggested a treatment effect with hydroxychloroquine in the HSB subgroup and with rituximab in the DDF subgroup compared with placebo.
Interpretation
Stratification on the basis of patient-reported symptoms of patients with primary Sjögren's syndrome revealed distinct pathobiological endotypes with distinct responses to immunomodulatory treatments. Our data have important implications for clinical management, trial design, and therapeutic development. Similar stratification approaches might be useful for patients with other chronic immune-mediated diseases.
Funding
UK Medical Research Council, British Sjogren's Syndrome Association, French Ministry of Health, Arthritis Research UK, Foundation for Research in Rheumatology
Non-native proteins inhibit the ER oxidoreductin 1 (Ero1)–protein disulfide-isomerase relay when protein folding capacity is exceeded
Abstract
Protein maturation in the endoplasmic reticulum (ER) depends on a fine balance between oxidative protein folding and quality control mechanisms, which together ensure high-capacity export of properly folded proteins from the ER. Oxidative protein folding needs to be regulated to avoid hyperoxidation. The folding capacity of the ER is regulated by the unfolded protein response (UPR) and ER-associated degradation (ERAD). The UPR is triggered by unfolded protein stress and leads to up-regulation of cellular components such as chaperones and folding catalysts. These components relieve stress by increasing folding capacity and up-regulating ERAD components that remove non-native proteins. Although oxidative protein folding and the UPR/ERAD pathways each are well-understood, very little is known about any direct cross-talk between them. In this study, we carried out comprehensive in vitro activity and binding assays, indicating that the oxidative protein folding relay formed by ER oxidoreductin 1 (Ero1), and protein disulfide-isomerase can be inactivated by a feedback inhibition mechanism involving unfolded proteins and folding intermediates when their levels exceed the folding capacity of the system. This mechanism allows client proteins to remain mainly in the reduced state and thereby minimizes potential futile oxidation–reduction cycles and may also enhance ERAD, which requires reduced protein substrates. Relief from excess levels of non-native proteins by increasing the levels of folding factors removed the feedback inhibition. These results reveal regulatory cross-talk between the oxidative protein folding and UPR and ERAD pathways
Applications of catalyzed cytoplasmic disulfide bond formation
Abstract
Disulfide bond formation is an essential post-translational modification required for many proteins to attain their native, functional structure. The formation of disulfide bonds, otherwise known as oxidative protein folding, occurs in the endoplasmic reticulum and mitochondrial inter-membrane space in eukaryotes and the periplasm of prokaryotes. While there are differences in the molecular mechanisms of oxidative folding in different compartments, it can essentially be broken down into two steps, disulfide formation and disulfide isomerization. For both steps, catalysts exist in all compartments where native disulfide bond formation occurs. Due to the importance of disulfide bonds for a plethora of proteins, considerable effort has been made to generate cell factories which can make them more efficiently and cheaper. Recently synthetic biology has been used to transfer catalysts of native disulfide bond formation into the cytoplasm of prokaryotes such as Escherichia coli. While these engineered systems cannot yet rival natural systems in the range and complexity of disulfide-bonded proteins that can be made, a growing range of proteins have been made successfully and yields of homogenously folded eukaryotic proteins exceeding g/l yields have been obtained. This review will briefly give an overview of such systems, the uses reported to date and areas of future potential development, including combining with engineered systems for cytoplasmic glycosylation
- …