31 research outputs found

    Methods for exploring the faecal microbiome of premature infants: a review

    Get PDF
    The premature infant gut microbiome plays an important part in infant health and development, and recognition of the implications of microbial dysbiosis in premature infants has prompted significant research into these issues. The approaches to designing investigations into microbial populations are many and varied, each with its own benefits and limitations. The technique used can influence results, contributing to heterogeneity across studies. This review aimed to describe the most common techniques used in researching the preterm infant microbiome, detailing their various limitations. The objective was to provide those entering the field with a broad understanding of available methodologies, so that the likely effects of their use can be factored into literature interpretation and future study design. We found that although many techniques are used for characterising the premature infant microbiome, 16S rRNA short amplicon sequencing is the most common. 16S rRNA short amplicon sequencing has several benefits, including high accuracy, discoverability and high throughput capacity. However, this technique has limitations. Each stage of the protocol offers opportunities for the injection of bias. Bias can contribute to variability between studies using 16S rRNA high throughout sequencing. Thus, we recommend that the interpretation of previous results and future study design be given careful consideration

    To Probiotic or Not to Probiotic: A Metagenomic Comparison of the Discharge Gut Microbiome of Infants Supplemented With Probiotics in NICU and Those Who Are Not

    Get PDF
    Background: Preterm birth is associated with the development of both acute and chronic disease, and the disruption of normal gut microbiome development. Recent studies have sought to both characterize and understand the links between disease and the microbiome. Probiotic treatment may correct for these microbial imbalances and, in turn, mitigate disease. However, the criteria for probiotic supplementation in NICU's in North Queensland, Australia limits its usage to the most premature (<32 weeks gestation) and small for gestational age infants (<1,500 g). Here we use a combination of amplicon and shotgun metagenomic sequencing to compare the gut microbiome of infants who fulfill the criteria for probiotic-treatment and those who do not. The aims of this study were to determine if probiotic-supplemented preterm infants have significantly different taxonomic and functional profiles when compared to non-supplemented preterm infants at discharge. Methods: Preterm infants were recruited in North Queensland, Australia, with fecal samples collected just prior to discharge (36 ± 0.5 weeks gestation), to capture potential changes that could be probiotic induced. All samples underwent 16S rRNA gene amplicon sequencing, with a subset also used for shotgun metagenomics. Mixed effects models were used to assess the effect of probiotics on alpha diversity, beta diversity and taxonomic abundance, whilst accounting for other known covariates. Results: Mixed effects modeling demonstrated that probiotic treatment had a significant effect on overall community composition (beta diversity), characterized by greater alpha diversity and differing abundances of several taxa, including Bifidobacterium and Lactobacillus, in supplemented infants. Conclusion: Late preterm-infants who go without probiotic-supplementation may be missing out on stabilizing-effects provided through increased alpha diversity and the presence of commensal microbes, via the use of probiotic-treatment. These findings suggest that late-preterm infants may benefit from probiotic supplementation. More research is needed to both understand the consequences of the differences observed and the long-term effects of this probiotic-treatment

    The bacterial gut microbiome of probiotic-treated very-preterm infants: changes from admission to discharge

    Get PDF
    Background: Preterm birth is associated with the development of acute and chronic disease, potentially, through the disruption of normal gut microbiome development. Probiotics may correct for microbial imbalances and mitigate disease risk. Here, we used amplicon sequencing to characterise the gut microbiome of probiotic-treated premature infants. We aimed to identify and understand variation in bacterial gut flora from admission to discharge and in association with clinical variables. Methods: Infants born <32 weeks gestation and <1500 g, and who received probiotic treatment, were recruited in North Queensland Australia. Meconium and faecal samples were collected at admission and discharge. All samples underwent 16S rRNA short amplicon sequencing, and subsequently, a combination of univariate and multivariate analyses. Results: 71 admission and 63 discharge samples were collected. Univariate analyses showed significant changes in the gut flora from admission to discharge. Mixed-effects modelling showed significantly lower alpha diversity in infants diagnosed with either sepsis or retinopathy of prematurity (ROP) and those fed formula. In addition, chorioamnionitis, preeclampsia, sepsis, necrotising enterocolitis and ROP were also all associated with the differential abundance of several taxa. Conclusions: The lower microbial diversity seen in infants with diagnosed disorders or formula-fed, as well as differing abundances of several taxa across multiple variables, highlights the role of the microbiome in the development of health and disease. This study supports the need for promoting healthy microbiome development in preterm neonates

    Exploring the long-term colonisation and persistence of probiotic-prophylaxis species on the gut microbiome of preterm infants: a pilot study

    Get PDF
    Preterm infants suffer from a higher incidence of acute diseases such as necrotising enterocolitis and sepsis. This risk can be mitigated through probiotic prophylaxis during admission. This reduction in risk is likely the result of acute modulation of the gut microbiome induced by probiotic species, which has been observed to occur up until discharge. We aimed to determine if this modulation, and the associated probiotic species, persisted beyond discharge. We conducted both a cross-sectional analysis (n= 18), at similar to 18 months of age, and a longitudinal analysis (n= 6), from admission to 18 months of the gut microbiome of preterm infants using both shotgun metagenomics and 16S rRNA profiling respectively. The 16S amplicon sequencing revealed that the microbial composition of the probiotic-supplemented infants changed dramatically over time, stabilising at discharge. However, species from the probiotic Infloran (R), as well as positive modulatory effects previously associated with supplementation, do not appear to persist beyond discharge and once prophylaxis has stopped. Conclusions: Although differences exist between supplemented and non-supplemented groups, the implications of these differences remain unclear. Additionally, despite a lack of long-term colonisation, the presence of probiotics during early neonatal life may still have modulatory effects on the microbiome assembly and immune system training

    Weak lensing, dark matter and dark energy

    Full text link
    Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.Comment: Invited review article for the GRG special issue on gravitational lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on three-point function and some references added. Matches the published versio

    Capturing wheat phenotypes at the genome level

    Get PDF
    Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world’s most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public–private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence

    Progress towards materials science above 1000 GPa (10 Mbar) on the NIF laser

    No full text
    Solid state dynamics experiments at extreme pressures, P > 1000 GPa (10 Mbar), and ultrahigh strain rates (106–108 s−1) are being developed for the National Ignition Facility (NIF) laser. These experiments will open up exploration of new regimes of materials science at an order of magnitude higher pressures than have been possible to date. Such extreme, solid state conditions can be accessed with a ramped pressure drive. The experimental, computational, and theoretical techniques are being developed and tested on the Omega laser. Constitutive models for solid state strength under these conditions are tested by comparing simulations with experiments measuring perturbation growth from the Rayleigh–Taylor instability in solid state samples of vanadium. Radiography techniques using synchronized bursts of x-rays have been developed to diagnose this perturbation growth. Velocity interferometer measurements (VISAR) establish the high pressure conditions generated by the ramped drive. Experiments on Omega measuring dynamic material strength at peak pressures of ~1 Mbar will be discussed. The time resolved observation of foil cracking and void formation show the need for tamped samples and a planar drive
    corecore