11 research outputs found

    Methods for improving limited field-of-view radiotherapy reconstructions using imperfect a priori images

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    A feasible method for clinical delivery verification and dose reconstruction in tomotherapy

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    Monte Carlo study of a highly efficient gas ionization detector for megavoltage imaging and image-guided radiotherapy

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    Radiation characteristics of helical tomotherapy

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    Evaluation of coplanar partial left breast irradiation using tomotherapy-based topotherapy.

    No full text
    PURPOSE: To investigate the use of topotherapy for accelerated partial breast irradiation through field-design optimization and dosimetric comparison to linear accelerator-based three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT). METHODS AND MATERIALS: Hypothetical 3-cm lumpectomy sites were contoured in each quadrant of a left breast by using dosimetric guidelines from the National Surgical Adjuvant Breast and Bowel Project B-39/Radiation Therapy Oncology Group 0413 protocol. Coplanar intensity-modulated topotherapy treatment plans were optimized by using two-, three-, four-, five-, and seven-field arrangements for delivery by the tomotherapy unit with fixed gantry angles. Optimized noncoplanar five-field 3D-CRT and IMRT were compared with corresponding topotherapy plans. RESULTS: On average, 99.5% +/- 0.5% of the target received 100% of the prescribed dose for all topotherapy plans. Average equivalent uniform doses ranged from 1.20-2.06, 0.79-1.76, and 0.10-0.29 Gy for heart, ipsilateral lung, and contralateral lung, respectively. Average volume of normal breast exceeding 90% of the prescription and average area of skin exceeding 35 Gy were lowest for five-field plans. Average uniformity indexes for five-field plans using 3D-CRT, IMRT, and topotherapy were 1.047, 1.050, and 1.040, respectively. Dose-volume histograms and calculated equivalent uniform doses of all three techniques illustrate clinically equivalent doses to ipsilateral breast, lung, and heart. CONCLUSIONS: This dosimetric evaluation for a single patient shows that coplanar partial breast topotherapy provides good target coverage with exceptionally low dose to organs at risk. Use of more than five fields provided no additional dosimetric advantage. A comparison of five-field topotherapy to 3D-CRT and IMRT for accelerated partial breast irradiation illustrates equivalent target conformality and uniformity

    Human α-Defensins Inhibit Hemolysis Mediated by Cholesterol-Dependent Cytolysins▿

    No full text
    Many pathogenic gram-positive bacteria release exotoxins that belong to the family of cholesterol-dependent cytolysins. Here, we report that human α-defensins HNP-1 to HNP-3 acted in a concentration-dependent manner to protect human red blood cells from the lytic effects of three of these exotoxins: anthrolysin O (ALO), listeriolysin O, and pneumolysin. HD-5 was very effective against listeriolysin O but less effective against the other toxins. Human α-defensins HNP-4 and HD-6 and human ÎČ-defensin-1, -2, and -3 lacked protective ability. HNP-1 required intact disulfide bonds to prevent toxin-mediated hemolysis. A fully linearized analog, in which all six cysteines were replaced by aminobutyric acid (Abu) residues, showed greatly reduced binding and protection. A partially unfolded HNP-1 analog, in which only cysteines 9 and 29 were replaced by Abu residues, showed intact ALO binding but was 10-fold less potent in preventing hemolysis. Surface plasmon resonance assays revealed that HNP-1 to HNP-3 bound all three toxins at multiple sites and also that solution-phase HNP molecules could bind immobilized HNP molecules. Defensin concentrations that inhibited hemolysis by ALO and listeriolysin did not prevent these toxins from binding either to red blood cells or to cholesterol. Others have shown that HNP-1 to HNP-3 inhibit lethal toxin of Bacillus anthracis, toxin B of Clostridium difficile, diphtheria toxin, and exotoxin A of Pseudomonas aeruginosa; however, this is the first time these defensins have been shown to inhibit pore-forming toxins. An “ABCDE mechanism” that can account for the ability of HNP-1 to HNP-3 to inhibit so many different exotoxins is proposed
    corecore