281 research outputs found
Fundamental limitations for quantum and nano thermodynamics
The relationship between thermodynamics and statistical physics is valid in
the thermodynamic limit - when the number of particles becomes very large.
Here, we study thermodynamics in the opposite regime - at both the nano scale,
and when quantum effects become important. Applying results from quantum
information theory we construct a theory of thermodynamics in these limits. We
derive general criteria for thermodynamical state transformations, and as
special cases, find two free energies: one that quantifies the
deterministically extractable work from a small system in contact with a heat
bath, and the other that quantifies the reverse process. We find that there are
fundamental limitations on work extraction from nonequilibrium states, owing to
finite size effects and quantum coherences. This implies that thermodynamical
transitions are generically irreversible at this scale. As one application of
these methods, we analyse the efficiency of small heat engines and find that
they are irreversible during the adiabatic stages of the cycle.Comment: Final, published versio
Automatic de-identification of textual documents in the electronic health record: a review of recent research
<p>Abstract</p> <p>Background</p> <p>In the United States, the Health Insurance Portability and Accountability Act (HIPAA) protects the confidentiality of patient data and requires the informed consent of the patient and approval of the Internal Review Board to use data for research purposes, but these requirements can be waived if data is de-identified. For clinical data to be considered de-identified, the HIPAA "Safe Harbor" technique requires 18 data elements (called PHI: Protected Health Information) to be removed. The de-identification of narrative text documents is often realized manually, and requires significant resources. Well aware of these issues, several authors have investigated automated de-identification of narrative text documents from the electronic health record, and a review of recent research in this domain is presented here.</p> <p>Methods</p> <p>This review focuses on recently published research (after 1995), and includes relevant publications from bibliographic queries in PubMed, conference proceedings, the ACM Digital Library, and interesting publications referenced in already included papers.</p> <p>Results</p> <p>The literature search returned more than 200 publications. The majority focused only on structured data de-identification instead of narrative text, on image de-identification, or described manual de-identification, and were therefore excluded. Finally, 18 publications describing automated text de-identification were selected for detailed analysis of the architecture and methods used, the types of PHI detected and removed, the external resources used, and the types of clinical documents targeted. All text de-identification systems aimed to identify and remove person names, and many included other types of PHI. Most systems used only one or two specific clinical document types, and were mostly based on two different groups of methodologies: pattern matching and machine learning. Many systems combined both approaches for different types of PHI, but the majority relied only on pattern matching, rules, and dictionaries.</p> <p>Conclusions</p> <p>In general, methods based on dictionaries performed better with PHI that is rarely mentioned in clinical text, but are more difficult to generalize. Methods based on machine learning tend to perform better, especially with PHI that is not mentioned in the dictionaries used. Finally, the issues of anonymization, sufficient performance, and "over-scrubbing" are discussed in this publication.</p
New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins
Proteorhodopsin phototrophy was recently discovered in oceanic surface waters. In an effort to characterize uncultured proteorhodopsin-exploiting bacteria, large-insert bacterial artificial chromosome (BAC) libraries from the Mediterranean Sea and Red Sea were analyzed. Fifty-five BACs carried diverse proteorhodopsin genes, and we confirmed the function of five. We calculate that proteorhodopsin-exploiting bacteria account for 13% of microorganisms in the photic zone. We further show that some proteorhodopsin-containing bacteria possess a retinal biosynthetic pathway and a reverse sulfite reductase operon, employed by prokaryotes oxidizing sulfur compounds. Thus, these novel phototrophs are an unexpectedly large and metabolically diverse component of the marine microbial surface water
Eag and HERG potassium channels as novel therapeutic targets in cancer
Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag), Human ether à-go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers
Identifying risk factors for blood culture negative infective endocarditis: An international ID-IRI study
Background: Blood culture-negative endocarditis (BCNE) is a diagnostic challenge, therefore our objective was to pinpoint high-risk cohorts for BCNE. Methods: The study included adult patients with definite endocarditis. Data were collected via the Infectious Diseases International Research Initiative (ID-IRI). The study analysing one of the largest case series ever reported was conducted across 41 centers in 13 countries. We analysed the database to determine the predictors of BCNE using univariate and logistic regression analyses. Results: Blood cultures were negative in 101 (11.65 %) of 867 patients. We disclosed that as patients age, the likelihood of a negative blood culture significantly decreases (OR 0.975, 95 % CI 0.963–0.987, p < 0.001). Additionally, factors such as rheumatic heart disease (OR 2.036, 95 % CI 0.970–4.276, p = 0.049), aortic stenosis (OR 3.066, 95 % CI 1.564–6.010, p = 0.001), mitral regurgitation (OR 1.693, 95 % CI 1.012–2.833, p = 0.045), and prosthetic valves (OR 2.539, 95 % CI 1.599–4.031, p < 0.001) are associated with higher likelihoods of negative blood cultures. Our model can predict whether a patient falls into the culture-negative or culture-positive groups with a threshold of 0.104 (AUC±SE = 0.707 ± 0.027). The final model demonstrates a sensitivity of 70.3 % and a specificity of 57.0 %. Conclusion: Caution should be exercised when diagnosing endocarditis in patients with concurrent cardiac disorders, particularly in younger cases
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
An SK3 Channel/nWASP/Abi-1 Complex Is Involved in Early Neurogenesis
BACKGROUND: The stabilization or regulated reorganization of the actin cytoskeleton is essential for cellular structure and function. Recently, we could show that the activation of the SK3-channel that represents the predominant SK-channel in neural stem cells, leads to a rapid local outgrowth of long filopodial processes. This observation indicates that the rearrangement of the actin based cytoskeleton via membrane bound SK3-channels might selectively be controlled in defined micro compartments of the cell. PRINCIPAL FINDINGS: We found two important proteins for cytoskeletal rearrangement, the Abelson interacting protein 1, Abi-1 and the neural Wiskott Aldrich Syndrome Protein, nWASP, to be in complex with SK3- channels in neural stem cells (NSCs). Moreover, this interaction is also found in spines and postsynaptic compartments of developing primary hippocampal neurons and regulates neurite outgrowth during early phases of differentiation. Overexpression of the proteins or pharmacological activation of SK3 channels induces obvious structural changes in NSCs and hippocampal neurons. In both neuronal cell systems SK3 channels and nWASP act synergistic by strongly inducing filopodial outgrowth while Abi-1 behaves antagonistic to its interaction partners. CONCLUSIONS: Our results give good evidence for a functional interplay of a trimeric complex that transforms incoming signals via SK3-channel activation into the local rearrangement of the cytoskeleton in early steps of neuronal differentiation involving nWASP and Abi-1 actin binding proteins
Comparison of the ligand‐binding properties of fluorescent VEGF‐A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET
Background and Purpose: Vascular Endothelial Growth Factor A (VEGF-A) is a key mediator of angiogenesis. A striking feature of the binding of a fluorescent analogue of VEGF165a to NanoLuciferase-tagged VEGF Receptor 2 (VEGFR2) in living cells is that the bioluminescence resonance energy transfer (BRET) signal is not sustained and declines over time. This may be secondary to receptor internalisation. Here we have compared the binding of three fluorescent VEGF-A isoforms to VEGFR2 in cells and isolated membrane preparations.Experimental Approach: Ligand binding kinetics were monitored in both intact HEK293T cells and membranes (expressing NanoLuciferase tagged VEGFR2) using BRET between the tagged receptor and fluorescent analogues of VEGF165a, VEGF165b and VEGF121a. VEGFR2 endocytosis in intact cells expressing VEGFR2 was monitored by following the appearance of fluorescent ligand-associated receptors in intracellular endosomes using automated quantitative imaging.Key Results: Quantitiative analysis of the effect of fluorescent VEGF-A isoforms onVEGFR2 endocytosis in cells demonstrated that they produced a rapid and potent translocation of ligand-bound VEGFR2 into intracellular endosomes. NanoBRET can be used to monitor the kinetics of the binding of fluorescent VEGF-A isoforms to VEGFR2. In isolated membrane preparations, ligand binding association curves were maintained for the duration of the 90 minute experiment. Measurement of koff at pH 6.0 in membrane preparations indicated shorter ligand residence times than those obtained at pH 7.4.Conclusions and Implications: These studies suggest that rapid VEGF-A isoform-induced receptor endocytosis shortens agonist residence times on the receptor (1/koff) as VEGFR2 moves from the plasma membrane to intracellular endosomes
- …