2,135 research outputs found
Resistance of cactus pear (Opuntia ficus-indica) against Pseudocercospora opuntiae through β‑1,3‑glucanase activity and polyphenolic compounds in cladodes
Black spot disease, caused by the hemibiotrophic fungus Pseudocercospora opuntiae, is one of the main phytosanitary problems of cactus (Opuntia spp.). Through mass selection, one cultivar of Opuntia ficus-indica (L.) Mill. resistant to colonization by P. opuntiae was identified. The ethanolic extract of resistant cladodes showed higher levels of total condensed tannins, flavonoids and polyphenols than those of the susceptible genotypes, generating 93% inhibition of P. opuntiae conidial germination in vitro. The total protein in the resistant genotype showed 300% higher β-1,3-glucanase than the susceptible genotype. This increased activity was able to inhibit germination of conidia by 90%, a similar effect to that of the fungicide Captan® (N‑trichloromethylthio-4-cyclohexene 1,2-dicarboximide). It was shown, for the first time, that the combined action of cactus polyphenols and β-1,3-glucanase contributes significantly to resistance against P. opuntiae. Activity of this enzyme and the phytochemical profile can be used as criteria to predict and detect cactus germplasm with resistance to black spot.Fil: Ochoa, Maria Judith. Universidad Nacional de Santiago del Estero. Facultad de AgronomĂa y Agroindustrias; ArgentinaFil: González Flores, L. M.. Instituto TecnolĂłgico de Tlajomulco; MĂ©xicoFil: Cruz Rubio, J. M.. Instituto TecnolĂłgico de Tlajomulco; MĂ©xicoFil: Rivera LĂłpez, L. A.. Instituto TecnolĂłgico de Tlajomulco; MĂ©xicoFil: Rodriguez, Sergio A.. Universidad Nacional de Santiago del Estero; ArgentinaFil: Nazareno, MĂłnica Azucena. Universidad Nacional de Santiago del Estero; Argentina. Universidad Nacional de Santiago del Estero. Facultad de AgronomĂa y Agroindustrias; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Tucumán; ArgentinaFil: GĂłmez Leyva, J. F.. Instituto TecnolĂłgico de Tlajomulco; MĂ©xic
Effect of diacutaneous fibrolysis on the muscular properties of gastrocnemius muscle
Diacutaneous fibrolysis is a noninvasive technique that has been shown to be effective in the treatment of musculoskeletal disorders such as shoulder pain, lateral epicondylalgia, patellofemoral pain syndrome and carpal tunnel syndrome. However, while diacutaneous fibrolysis is applied to soft tissue, its effects on muscular properties are unknown. The purpose of the present study was to evaluate the effects of diacutaneous fibrolysis on muscle properties as measured by tensiomyography and myotonometry in asymptomatic subjects. An analytical descriptive study was performed. A single session of diacutaneous fibrolysis on the gastrocnemius muscle was applied to one limb (treated limb group) and the other limb was the control (control limb group). Subjects were assessed with tensiomyography and myotonometry before treatment (T0), after treatment (T1) and 30 minutes later (T2). The primary outcomes were tensiomyography and myotonometry variables. The treated limb group showed a statistically significant increase (p<0.05) in tensiomyography parameters. A decrease in rigidity and increase in relaxation was also observed on myotonometry at T1, with some of the effects being maintained at T2. Rigidity and relaxation at T1 were statistically significant between groups (p<0.05). A single session of diacutaneous fibrolysis to the gastrocnemius muscle of asymptomatic subjects produced immediate changes in muscle properties. These changes were maintained 30 minutes after the application of the technique
Design and characterization of a magneto-dielectric composite in high frequency with aligned magnetite powders
A magneto-dielectric material composed of a polyester resin-based microstrip (P115A), copper sheets and magnetite powders was designed in concentrations of 10, 20 and 30% Wt and with filters of 200, 325 and 500. The particles were aligned vertically and horizontally during the curing process using 300 mT magnetic fields. From a complete factorial design of 33, 27 microstrip-type circuits of 4 mm width, 70 mm length and 0.93 mm thickness were manufactured, characterized by scanning electron microscopy and vector network analysis. The cross-matrix analysis determined an optimal circuit response from the magneto-dielectric material with a concentration of 20% magnetite and an average particle size of 21.48 ÎĽm in horizontal alignment to the applied magnetic field and to the transmission line, obtaining a relative dielectric constant of Er 3.88 with a low dielectric loss of 0.054, within an operating range of 150 KHz to 4 GHz
A population-based controlled experiment assessing the epidemiological impact of digital contact tracing
While Digital contact tracing (DCT) has been argued to be a valuable complement to manual tracing in the containment of COVID-19, no empirical evidence of its effectiveness is available to date. Here, we report the results of a 4-week population-based controlled experiment that took place in La Gomera (Canary Islands, Spain) between June and July 2020, where we assessed the epidemiological impact of the Spanish DCT app Radar Covid. After a substantial communication campaign, we estimate that at least 33% of the population adopted the technology and further showed relatively high adherence and compliance as well as a quick turnaround time. The app detects about 6.3 close-contacts per primary simulated infection, a significant percentage being contacts with strangers, although the spontaneous follow-up rate of these notified cases is low. Overall, these results provide experimental evidence of the potential usefulness of DCT during an epidemic outbreak in a real population
Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps
Density-functional calculations of the phonon spectrum and electron-phonon
coupling in MgB are presented. The phonons, which involve in-plane
B displacements, couple strongly to the electronic bands. The
isotropic electron-phonon coupling constant is calculated to be about 0.8.
Allowing for different order parameters in different bands, the superconducting
in the clean limit is calculated to be significantly larger. The
phonons are strongly anharmonic, and the non-linear contribution to
the coupling between the modes and the p bands is significant.Comment: 4 pages, 3 figure
Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems
Towards the design of contrast enhanced agents systematic Ga3 doping on magnetite nanoparticles
The main objective of the preparation of the Fe3 amp; 8722;xGaxO4 0.14 amp; 8804; x amp; 8804; 1.35 system was to further the knowledge of the magnetic response of Ga3 doped magnetite for application as MRI contrast agents. With this purpose, monodisperse nanoparticles between 7 and 10 nm with different amounts of gallium were prepared from an optimized protocol based on thermal decomposition of metallo organic precursors. Thorough characterization of the sample was conducted in order to understand the influence of gallium doping on the structural, morphological and magnetic properties of the Fe3 amp; 8722;xGaxO4 system. X ray diffraction and X ray absorption near edge structure measurements have proved the progressive incorporation of Ga in the spinel structure, with different occupations in both tetrahedral and octahedral sites. Magnetization measurements as a function of field temperature have shown a clear dependence of magnetic saturation on the gallium content, reaching an Ms value of 110 Am2 kg amp; 8722;1 at 5 K for x 0.14 significantly higher than bulk magnetite and considerably decreasing for amounts above x 0.57 of gallium. For this reason, nanoparticles with moderate Ga quantities were water transferred by coating them with the amphiphilic polymer PMAO to further analyse their biomedical potential. Cytotoxicity assays have demonstrated that Fe3 amp; 8722;xGaxO4 PMAO formulations with x amp; 8804; 0.57, which are the ones with better magnetic response, are not toxic for cells. Finally, the effect of gallium doping on relaxivities has been analysed by measuring longitudinal T1 amp; 8722;1 and transverse T1 amp; 8722;1 proton relaxation rates at 1.4 T revealing that nanoparticles with x 0.14 Ga3 content present remarkable T2 contrast and the nanoparticles with x 0.26 have great potential to act as dual T1 T2 contrast agent
Recommended from our members
Time-Dependent Density-Functional Theory in Massively Parallel Computer Architectures: The Octopus Project
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn–Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn–Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.Chemistry and Chemical Biolog
- …