157 research outputs found

    Experimental Entanglement Concentration and Universal Bell-state Synthesizer

    Get PDF
    We report a novel Bell-state synthesizer in which an interferometric entanglement concentration scheme is used. An initially mixed polarization state from type-II spontaneous parametric down-conversion becomes entangled after the interferometric entanglement concentrator. This Bell-state synthesizer is universal in the sense that the output polarization state is not affected by spectral filtering, crystal thickness, and, most importantly, the choice of pump source. It is also robust against environmental disturbance and a more general state, partially mixed-partially entangled state, can be readily generated as well.Comment: Minor update (Newer data

    The uses of coherent structure (Dryden Lecture)

    Get PDF
    The concept of coherent structure in turbulent flow is a revolutionary idea which is being developed by evolutionary means. The main objective of this review is to list some solid achievements, showing what can be done by using the concept of coherent structure that cannot be done without it. The nature of structure is described in terms of some related concepts, including celerity, topology, and the phenomenon of coalescence and splitting of structure. The main emphasis is on the mixing layer, as the one flow whose structure is well enough understood so that technical applications are now being made in problems of mixing and chemistry. An attempt is made to identify some conceptual and experimental obstacles that stand in the way of progress in other technically important flows, particularly the turbulent boundary layer. A few comments are included about the role of structure in numerical simulations and in current work on manipulation and control of turbulent flow. Some recent developments are cited which suggest that the time is nearly right for corresponding advances to occur in turbulence modeling

    The pattern of growth hormone secretion during the menstrual cycle in normal and depressed women

    Full text link
    Objective Major depression is associated to altered hypothalamic pituitary function. Stress is linked to elevated cortisol as well as menstrual cycle disturbance; however, there is no known relationship between depression and menstrual cycle disruption. The aim of this study was to investigate changes of growth hormone (GH) secretion during the menstrual cycle in normal and depressed women. Design Case-control study. Patients and methods Nineteen women affected with depression and 24 normal controls were included. The two groups had comparable body mass index (BMI), and age (29·4 ±9·8 vs. 28·6 ± 9·7 years). Nine depressed and 10 controls were studied in the follicular phase, while 10 depressed and 14 controls were studied in the luteal phase of the cycle. GH was sampled every 10 min for 24 h, and the data were analysed by the cluster pulse detection method. Results There was no difference in 24-h mean GH concentrations between depressed and control subjects (P =0·93), even after accounting for menstrual cycle phase (P = 0·38). GH pulse frequency was higher during the follicular phase of the cycle (P =0·032), and nocturnal GH was higher in the follicular phase of the cycle (P =0·05, and after adjusting for 24-h GH, P= 0·0138) regardless of whether thesubjects were depressed or healthy. Conclusions In studies of GH secretion in women with or without depression, it is necessary to control for the phase of menstrual cycle.NIMH MH 50030 NICHD K12HD01438Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49486/2/KasaVubuYoung.pd

    Protostellar and cometary detections of organohalogens

    Get PDF
    Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes1. Consequently, they have been proposed as biomarkers in the search for life on exoplanets2. Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain3,4. Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293–2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov–Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.Stars and planetary systemsInterstellar matter and star formatio

    Project TENDR: Targeting environmental neuro-developmental risks. the TENDR consensus statement

    Get PDF
    Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential

    Mudança organizacional: uma abordagem preliminar

    Full text link

    The Physics of the B Factories

    Get PDF
    corecore