20,671 research outputs found
Active Suppression of Pogo on the Space Shuttle
The use of active pogo suppressors on the space shuttle was qualitatively investigated. Suppressor design concepts and the effectiveness of these designs in maintaining the stability of the shuttle vehicle were the primary concerns. Suppressor design concepts were developed by means of a series of parametric stability analyses. These two designs together with two designs provided by NASA were evaluated in detail for control effectiveness, performance relative to a passive suppression device, sensitivity of performance to feedback error, suppressor volume flow requirements, and suppressor development requirements. An active device at the high pressure oxidizer pump inlet was shown to provide a simple and effective design that is insensitive to error in the feedback signal. The sizing of an active suppressor was demonstrated to be dependent upon knowledge of the dynamic characteristics of the system
Analysis of pogo on the space shuttle: Accumulator design guidelines and planar multiengine model development
The design guidelines were generated to support the selection of the baseline accumulator configuration for the space shuttle. They were based upon the elimination of the instabilities that had been predicted for the shuttle system (in the absence of accumulators) using the single-engine model. The multiengine pitch plane stability model was subsequently developed to enable a more refined analysis of the pogo problem. The results obtained with this refined model, in the absence of accumulators, indicated a generally stable system. However, it was found that reasonable adjustment of the axial motion of the feedline aft support on the external tank could induce instability of the system. This instability was eliminated by the addition of high-pressure oxidizer turbopump inlet accumulators to the system. The results obtained with the refined model did not suggest a need to alter the design guidelines that had been obtained previously. The analyses with the multiengine model also treated the question of the use of a phase margin in the system stability requirements
Cosmological dynamics of scalar field with non-minimal kinetic term
We investigate dynamics of scalar field with non-minimal kinetic term.
Nontrivial behavior of the field in the vicinity of singular points of kinetic
term is observed. In particular, the singular points could serve as attractor
for classical solutions.Comment: 6 pages, 3 figures, title is changed, some refs added, to be
published in Gen. Rel. and Gra
A pressure flux-split technique for computation of inlet flow behavior
A method for calculating the flow field in aircraft engine inlets is presented. The phenomena of inlet unstart and restart are investigated. Solutions of the reduced Navier-Stokes (RNS) equations are obtained with a time consistent direct sparse matrix solver that computes the transient flow field both internal and external to the inlet. Time varying shocks and time varying recirculation regions can be efficiently analyzed. The code is quite general and is suitable for the computation of flow for a wide variety of geometries and over a wide range of Mach and Reynolds numbers
Solution of three-dimensional afterbody flow using reduced Navier-Stokes equations
The flow over afterbody geometries was investigated using the reduced Navier-Stokes (RNS) approximation. Both pressure velocity flux-split and composites velocity primitive variable formulations were considered. Pressure or pseudopotential relaxation procedures are combined with sparse matrix or coupled strongly implicit algorithms to form a three-dimensional solver for general non-orthogonal coordinates. Three-dimensional subsonic and transonic viscous/inviscid interacting flows were evaluated. Solutions with and without regions of recirculation were obtained
Stationary Points of Scalar Fields Coupled to Gravity
We investigate the dynamics of gravity coupled to a scalar field using a
non-canonical form of the kinetic term. It is shown that its singular point
represents an attractor for classical solutions and the stationary value of the
field may occur distant from the minimum of the potential. In this paper
properties of universes with such stationary states are considered. We reveal
that such state can be responsible for modern dark energy density.Comment: H. Kroger, invited talk, FFP6, Udine (2004), revised version with
corrected author lis
Space shuttle pogo studies
Topics covered include: (1) pogo suppression for main propulsion subsystem operation; (2) application of quarter-scale low pressure oxidizer turbopump transfer functions; (3) pogo stability during orbital maneuvering subsystem operation; and (4) errors in frequency response measurements
Gravitational Wave Bursts from Collisions of Primordial Black Holes in Clusters
The rate of gravitational wave bursts from the mergers of massive primordial
black holes in clusters is calculated. Such clusters of black holes can be
formed through phase transitions in the early Universe. The central black holes
in clusters can serve as the seeds of supermassive black holes in galactic
nuclei. The expected burst detection rate by the LISA gravitational wave
detector is estimated.Comment: 10 pages, 2 figure
Two-Photon Beatings Using Biphotons Generated from a Two-Level System
We propose a two-photon beating experiment based upon biphotons generated
from a resonant pumping two-level system operating in a backward geometry. On
the one hand, the linear optical-response leads biphotons produced from two
sidebands in the Mollow triplet to propagate with tunable refractive indices,
while the central-component propagates with unity refractive index. The
relative phase difference due to different refractive indices is analogous to
the pathway-length difference between long-long and short-short in the original
Franson interferometer. By subtracting the linear Rayleigh scattering of the
pump, the visibility in the center part of the two-photon beating interference
can be ideally manipulated among [0, 100%] by varying the pump power, the
material length, and the atomic density, which indicates a Bell-type inequality
violation. On the other hand, the proposed experiment may be an interesting way
of probing the quantum nature of the detection process. The interference will
disappear when the separation of the Mollow peaks approaches the fundamental
timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008
- …