22,269 research outputs found

    Two-Particle Schroedinger Equation Animations of Wavepacket-Wavepacket Scattering (revised)

    Full text link
    A simple and explicit technique for the numerical solution of the two-particle, time-dependent Schr\"{o}dinger equation is assembled and tested. The technique can handle interparticle potentials that are arbitrary functions of the coordinates of each particle, arbitrary initial and boundary conditions, and multi-dimensional equations. Plots and animations are given here and on the World Wide Web of the scattering of two wavepackets in one dimension.Comment: 13 pages, 8 figures, animations at http://nacphy.physics.orst.edu/ComPhys/PACKETS

    Sufficient Covariate, Propensity Variable and Doubly Robust Estimation

    Full text link
    Statistical causal inference from observational studies often requires adjustment for a possibly multi-dimensional variable, where dimension reduction is crucial. The propensity score, first introduced by Rosenbaum and Rubin, is a popular approach to such reduction. We address causal inference within Dawid's decision-theoretic framework, where it is essential to pay attention to sufficient covariates and their properties. We examine the role of a propensity variable in a normal linear model. We investigate both population-based and sample-based linear regressions, with adjustments for a multivariate covariate and for a propensity variable. In addition, we study the augmented inverse probability weighted estimator, involving a combination of a response model and a propensity model. In a linear regression with homoscedasticity, a propensity variable is proved to provide the same estimated causal effect as multivariate adjustment. An estimated propensity variable may, but need not, yield better precision than the true propensity variable. The augmented inverse probability weighted estimator is doubly robust and can improve precision if the propensity model is correctly specified

    A really simple approximation of smallest grammar

    Full text link
    In this paper we present a really simple linear-time algorithm constructing a context-free grammar of size O(g log (N/g)) for the input string, where N is the size of the input string and g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear assuming that the alphabet Sigma of the input string can be identified with numbers from 1,ldots, N^c for some constant c. Algorithms with such an approximation guarantee and running time are known, however all of them were non-trivial and their analyses were involved. The here presented algorithm computes the LZ77 factorisation and transforms it in phases to a grammar. In each phase it maintains an LZ77-like factorisation of the word with at most l factors as well as additional O(l) letters, where l was the size of the original LZ77 factorisation. In one phase in a greedy way (by a left-to-right sweep and a help of the factorisation) we choose a set of pairs of consecutive letters to be replaced with new symbols, i.e. nonterminals of the constructed grammar. We choose at least 2/3 of the letters in the word and there are O(l) many different pairs among them. Hence there are O(log N) phases, each of them introduces O(l) nonterminals to a grammar. A more precise analysis yields a bound O(l log(N/l)). As l \leq g, this yields the desired bound O(g log(N/g)).Comment: Accepted for CPM 201

    The ionization structure of the Orion nebula: Infrared line observations and models

    Get PDF
    Observations of the (O III) 52 and 88 micron lines and the (N III) 57 micron line have been made at 6 positions and the (Ne III) 36 micron line at 4 positions in the Orion Nebula to probe its ionization structure. The measurements, made with a -40" diameter beam, were spaced every 45" in a line south from and including the Trapezium. The wavelength of the (Ne III) line was measured to be 36.013 + or - 0.004 micron. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one component and two component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37 to 40,000K and log g = 4.0 and 4.5. Both the new infrared observations and the visible line measurements of oxygen and nitrogen require T sub eff approx less than 37,000K. However, the double ionized neon requires a model with T sub eff more than or equal to 39,000K, which is more consistent with that inferred from the radio flux or spectral type. These differences in T sub eff are not due to effects of dust on the stellar radiation field, but are probably due to inaccuracies in the assumed stellar spectrum. The observed N(++)/O(++) ratio is almost twice the N(+)/O(+) ratio. The best fit models give N/H = 8.4 x 10 to the -5 power, O/H = 4.0 x 10 to the -4 power, and Ne/H = 1.3 x 10 to the -4 power. Thus neon and nitrogen are approximately solar, but oxygen is half solar in abundance. From the infrared O(++) lines it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement

    Computational Physics: Problem Solving with Computers

    Get PDF

    Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains of oscillators

    Full text link
    The largest Lyapunov exponent of a system composed by a heavy impurity embedded in a chain of anharmonic nearest-neighbor Fermi-Pasta-Ulam oscillators is numerically computed for various values of the impurity mass MM. A crossover between weak and strong chaos is obtained at the same value ϵT\epsilon_{_T} of the energy density ϵ\epsilon (energy per degree of freedom) for all the considered values of the impurity mass MM. The threshold \epsi lon_{_T} coincides with the value of the energy density ϵ\epsilon at which a change of scaling of the relaxation time of the momentum autocorrelation function of the impurity ocurrs and that was obtained in a previous work ~[M. Romero-Bastida and E. Braun, Phys. Rev. E {\bf65}, 036228 (2002)]. The complete Lyapunov spectrum does not depend significantly on the impurity mass MM. These results suggest that the impurity does not contribute significantly to the dynamical instability (chaos) of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. Finally, it is shown that the Kolmogorov-Sinai entropy of the chain has a crossover from weak to strong chaos at the same value of the energy density that the crossover value ϵT\epsilon_{_T} of largest Lyapunov exponent. Implications of this result are discussed.Comment: 6 pages, 5 figures, revtex4 styl

    Spitzer reveals what's behind Orion's Bar

    Get PDF
    We present Spitzer Space Telescope observations of 11 regions SE of the Bright Bar in the Orion Nebula, along a radial from the exciting star theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep spectra with matching IRS short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin. Orion is the benchmark for studies of the ISM particularly for elemental abundances. Spitzer observations provide a unique perspective on the Ne and S abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.01+/-0.08)E-4. We obtained corresponding new ground-based spectra at CTIO. These optical data are used to estimate the electron temperature, electron density, optical extinction, and the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase S abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7-6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S = 13.0+/-0.6. We derive the electron density versus distance from theta1OriC for [S III] and [S II]. Both distributions are for the most part decreasing with increasing distance. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ~12' from theta1OriC. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte

    OBLIGATORY JURISDICTION OF THE SUPREME COURT: APPEALS FROM STATE COURTS UNDER SECTION 237(a) OF THE JUDICIAL CODE

    Get PDF
    In two ways, a case decided by the state court of last resort may come to the Supreme Court of the United States: by certiorari, or by appeal. Certiorari is discretionary; and the considerations which will lead the Court to grant a writ of certiorari are set out in Rule 38 of the Supreme Court Rules, and are well-known to the practicing bar. Appeal, however, is directed to the obligatory jurisdiction of the Court. Rule 12 merely sets out the procedure to be followed in seeking an appeal; and for his decision as to whether he has substantive basis for an appeal, the practitioner must turn to the Judicial Code and to the cases interpreting it

    Two-Photon Beatings Using Biphotons Generated from a Two-Level System

    Full text link
    We propose a two-photon beating experiment based upon biphotons generated from a resonant pumping two-level system operating in a backward geometry. On the one hand, the linear optical-response leads biphotons produced from two sidebands in the Mollow triplet to propagate with tunable refractive indices, while the central-component propagates with unity refractive index. The relative phase difference due to different refractive indices is analogous to the pathway-length difference between long-long and short-short in the original Franson interferometer. By subtracting the linear Rayleigh scattering of the pump, the visibility in the center part of the two-photon beating interference can be ideally manipulated among [0, 100%] by varying the pump power, the material length, and the atomic density, which indicates a Bell-type inequality violation. On the other hand, the proposed experiment may be an interesting way of probing the quantum nature of the detection process. The interference will disappear when the separation of the Mollow peaks approaches the fundamental timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008

    The Nature and Frequency of Outflows from Stars in the Central Orion Nebula Cluster

    Get PDF
    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from a relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blue shifted because the redshifted outflows pass into the optically thick Photon Dominated Region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD data base.Comment: 152 pages, 46 figures, 7 tables. Accepted by A
    • …
    corecore