22,269 research outputs found
Two-Particle Schroedinger Equation Animations of Wavepacket-Wavepacket Scattering (revised)
A simple and explicit technique for the numerical solution of the
two-particle, time-dependent Schr\"{o}dinger equation is assembled and tested.
The technique can handle interparticle potentials that are arbitrary functions
of the coordinates of each particle, arbitrary initial and boundary conditions,
and multi-dimensional equations. Plots and animations are given here and on the
World Wide Web of the scattering of two wavepackets in one dimension.Comment: 13 pages, 8 figures, animations at
http://nacphy.physics.orst.edu/ComPhys/PACKETS
Sufficient Covariate, Propensity Variable and Doubly Robust Estimation
Statistical causal inference from observational studies often requires
adjustment for a possibly multi-dimensional variable, where dimension reduction
is crucial. The propensity score, first introduced by Rosenbaum and Rubin, is a
popular approach to such reduction. We address causal inference within Dawid's
decision-theoretic framework, where it is essential to pay attention to
sufficient covariates and their properties. We examine the role of a propensity
variable in a normal linear model. We investigate both population-based and
sample-based linear regressions, with adjustments for a multivariate covariate
and for a propensity variable. In addition, we study the augmented inverse
probability weighted estimator, involving a combination of a response model and
a propensity model. In a linear regression with homoscedasticity, a propensity
variable is proved to provide the same estimated causal effect as multivariate
adjustment. An estimated propensity variable may, but need not, yield better
precision than the true propensity variable. The augmented inverse probability
weighted estimator is doubly robust and can improve precision if the propensity
model is correctly specified
A really simple approximation of smallest grammar
In this paper we present a really simple linear-time algorithm constructing a
context-free grammar of size O(g log (N/g)) for the input string, where N is
the size of the input string and g the size of the optimal grammar generating
this string. The algorithm works for arbitrary size alphabets, but the running
time is linear assuming that the alphabet Sigma of the input string can be
identified with numbers from 1,ldots, N^c for some constant c. Algorithms with
such an approximation guarantee and running time are known, however all of them
were non-trivial and their analyses were involved. The here presented algorithm
computes the LZ77 factorisation and transforms it in phases to a grammar. In
each phase it maintains an LZ77-like factorisation of the word with at most l
factors as well as additional O(l) letters, where l was the size of the
original LZ77 factorisation. In one phase in a greedy way (by a left-to-right
sweep and a help of the factorisation) we choose a set of pairs of consecutive
letters to be replaced with new symbols, i.e. nonterminals of the constructed
grammar. We choose at least 2/3 of the letters in the word and there are O(l)
many different pairs among them. Hence there are O(log N) phases, each of them
introduces O(l) nonterminals to a grammar. A more precise analysis yields a
bound O(l log(N/l)). As l \leq g, this yields the desired bound O(g log(N/g)).Comment: Accepted for CPM 201
The ionization structure of the Orion nebula: Infrared line observations and models
Observations of the (O III) 52 and 88 micron lines and the (N III) 57 micron line have been made at 6 positions and the (Ne III) 36 micron line at 4 positions in the Orion Nebula to probe its ionization structure. The measurements, made with a -40" diameter beam, were spaced every 45" in a line south from and including the Trapezium. The wavelength of the (Ne III) line was measured to be 36.013 + or - 0.004 micron. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one component and two component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37 to 40,000K and log g = 4.0 and 4.5. Both the new infrared observations and the visible line measurements of oxygen and nitrogen require T sub eff approx less than 37,000K. However, the double ionized neon requires a model with T sub eff more than or equal to 39,000K, which is more consistent with that inferred from the radio flux or spectral type. These differences in T sub eff are not due to effects of dust on the stellar radiation field, but are probably due to inaccuracies in the assumed stellar spectrum. The observed N(++)/O(++) ratio is almost twice the N(+)/O(+) ratio. The best fit models give N/H = 8.4 x 10 to the -5 power, O/H = 4.0 x 10 to the -4 power, and Ne/H = 1.3 x 10 to the -4 power. Thus neon and nitrogen are approximately solar, but oxygen is half solar in abundance. From the infrared O(++) lines it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement
Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains of oscillators
The largest Lyapunov exponent of a system composed by a heavy impurity
embedded in a chain of anharmonic nearest-neighbor Fermi-Pasta-Ulam oscillators
is numerically computed for various values of the impurity mass . A
crossover between weak and strong chaos is obtained at the same value
of the energy density (energy per degree of freedom)
for all the considered values of the impurity mass . The threshold \epsi
lon_{_T} coincides with the value of the energy density at which a
change of scaling of the relaxation time of the momentum autocorrelation
function of the impurity ocurrs and that was obtained in a previous work ~[M.
Romero-Bastida and E. Braun, Phys. Rev. E {\bf65}, 036228 (2002)]. The complete
Lyapunov spectrum does not depend significantly on the impurity mass . These
results suggest that the impurity does not contribute significantly to the
dynamical instability (chaos) of the chain and can be considered as a probe for
the dynamics of the system to which the impurity is coupled. Finally, it is
shown that the Kolmogorov-Sinai entropy of the chain has a crossover from weak
to strong chaos at the same value of the energy density that the crossover
value of largest Lyapunov exponent. Implications of this result
are discussed.Comment: 6 pages, 5 figures, revtex4 styl
Spitzer reveals what's behind Orion's Bar
We present Spitzer Space Telescope observations of 11 regions SE of the
Bright Bar in the Orion Nebula, along a radial from the exciting star
theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep
spectra with matching IRS short-high (SH) and long-high (LH) aperture grid
patterns. Most previous IR missions observed only the inner few arcmin. Orion
is the benchmark for studies of the ISM particularly for elemental abundances.
Spitzer observations provide a unique perspective on the Ne and S abundances by
virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S
(S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is
especially well determined, with a value of (1.01+/-0.08)E-4. We obtained
corresponding new ground-based spectra at CTIO. These optical data are used to
estimate the electron temperature, electron density, optical extinction, and
the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment
for the total gas-phase S abundance because no S+ line is observed by Spitzer.
The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio
may be determined even when the weaker hydrogen line, H(7-6) here, is not
measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S =
13.0+/-0.6. We derive the electron density versus distance from theta1OriC for
[S III] and [S II]. Both distributions are for the most part decreasing with
increasing distance. A dramatic find is the presence of high-ionization Ne++
all the way to the outer optical boundary ~12' from theta1OriC. This IR result
is robust, whereas the optical evidence from observations of high-ionization
species (e.g. O++) at the outer optical boundary suffers uncertainty because of
scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte
OBLIGATORY JURISDICTION OF THE SUPREME COURT: APPEALS FROM STATE COURTS UNDER SECTION 237(a) OF THE JUDICIAL CODE
In two ways, a case decided by the state court of last resort may come to the Supreme Court of the United States: by certiorari, or by appeal. Certiorari is discretionary; and the considerations which will lead the Court to grant a writ of certiorari are set out in Rule 38 of the Supreme Court Rules, and are well-known to the practicing bar. Appeal, however, is directed to the obligatory jurisdiction of the Court. Rule 12 merely sets out the procedure to be followed in seeking an appeal; and for his decision as to whether he has substantive basis for an appeal, the practitioner must turn to the Judicial Code and to the cases interpreting it
Two-Photon Beatings Using Biphotons Generated from a Two-Level System
We propose a two-photon beating experiment based upon biphotons generated
from a resonant pumping two-level system operating in a backward geometry. On
the one hand, the linear optical-response leads biphotons produced from two
sidebands in the Mollow triplet to propagate with tunable refractive indices,
while the central-component propagates with unity refractive index. The
relative phase difference due to different refractive indices is analogous to
the pathway-length difference between long-long and short-short in the original
Franson interferometer. By subtracting the linear Rayleigh scattering of the
pump, the visibility in the center part of the two-photon beating interference
can be ideally manipulated among [0, 100%] by varying the pump power, the
material length, and the atomic density, which indicates a Bell-type inequality
violation. On the other hand, the proposed experiment may be an interesting way
of probing the quantum nature of the detection process. The interference will
disappear when the separation of the Mollow peaks approaches the fundamental
timescales for photon absorption in the detector.Comment: to appear in Phys. Rev. A (2008
The Nature and Frequency of Outflows from Stars in the Central Orion Nebula Cluster
Recent Hubble Space Telescope images have allowed the determination with
unprecedented accuracy of motions and changes of shocks within the inner Orion
Nebula. These originate from collimated outflows from very young stars, some
within the ionized portion of the nebula and others within the host molecular
cloud. We have doubled the number of Herbig-Haro objects known within the inner
Orion Nebula. We find that the best-known Herbig-Haro shocks originate from a
relatively few stars, with the optically visible X-ray source COUP 666 driving
many of them.
While some isolated shocks are driven by single collimated outflows, many
groups of shocks are the result of a single stellar source having jets oriented
in multiple directions at similar times. This explains the feature that shocks
aligned in opposite directions in the plane of the sky are usually blue shifted
because the redshifted outflows pass into the optically thick Photon Dominated
Region behind the nebula. There are two regions from which optical outflows
originate for which there are no candidate sources in the SIMBAD data base.Comment: 152 pages, 46 figures, 7 tables. Accepted by A
- …