10 research outputs found

    Photonic Quantum Logic with Narrowband Light from Single Atoms

    Get PDF
    Increasing control of single photons enables new applications of photonic quantum-enhanced technology and further experimental exploration of fundamental quantum phenomena. Here, we demonstrate quantum logic using narrow linewidth photons that are produced under nearly perfect quantum control from a single ^87Rb atom strongly coupled to a high-finesse cavity. We use a controlled- NOT gate integrated into a photonic chip to entangle these photons, and we observe non-classical correlations between events separated by periods exceeding the travel time across the chip by three orders of magnitude. This enables quantum technology that will use the properties of both narrowband single photon sources and integrated quantum photonics, such as networked quantum computing, narrow linewidth quantum enhanced sensing and atomic memories.Comment: 5 pates, 3 figure

    Multimode interferometry for entangling atoms in quantum networks

    Get PDF
    © 2019 IOP Publishing Ltd. We bring together a cavity-enhanced light-matter interface with a multimode interferometer (MMI) integrated onto a photonic chip and demonstrate the potential of such hybrid systems to tailor distributed entanglement in a quantum network. The MMI is operated with pairs of narrowband photons produced a priori deterministically from a single 87Rb atom strongly coupled to a high-finesse optical cavity. Non-classical coincidences between photon detection events show no loss of coherence when interfering pairs of these photons through the MMI in comparison to the two-photon visibility directly measured using Hong-Ou-Mandel interference on a beam splitter. This demonstrates the ability of integrated multimode circuits to mediate the entanglement of remote stationary nodes in a quantum network interlinked by photonic qubits

    Quantum key distribution with temporal mode encoding

    No full text
    Bibliography: p. 74-78

    Supporting multiple entanglement flows through a continuous-variable quantum repeater

    Full text link
    Quantum repeaters are critical to the development of quantum networks, enabling rates of entanglement distribution beyond those attainable by direct transmission. We consider multiple continuous-variable, squeezed light-based entanglement flows through a repeater involving noiseless linear amplification and dual homodyne detection. By analyzing a single-repeater-enhanced channel model with asymmetric losses across the repeater, we determine optimal placements of the central repeater hub in a 4-user hub-and-spoke network such that the rate of each entanglement flow through the hub is enhanced.Comment: 10 pages, 4 figures. Minor edits suggested by referee

    Multimode interferometry for entangling atoms in quantum networks

    No full text
    We bring together a cavity-enhanced light-matter interface with a multimode interferometer (MMI) integrated onto a photonic chip and demonstrate the potential of such hybrid systems to tailor distributed entanglement in a quantum network. The MMI is operated with pairs of narrowband photons produced a priori deterministically from a single 87Rb atom strongly coupled to a high-finesse optical cavity. Non-classical coincidences between photon detection events show no loss of coherence when interfering pairs of these photons through the MMI in comparison to the two-photon visibility directly measured using Hong-Ou-Mandel interference on a beam splitter. This demonstrates the ability of integrated multimode circuits to mediate the entanglement of remote stationary nodes in a quantum network interlinked by photonic qubits
    corecore