7 research outputs found

    A comprehensive first principles calculations on (Ba0.82K0.18)(Bi0.53Pb0.47)O3 single-cubic-perovskite superconductor

    Full text link
    In this present study, the pseudopotential plane-wave (PP-PW) pathway in the scheme of density functional theory (DFT) is utilized to investigate the various physical properties on (Ba0.82K0.18)(Bi0.53Pb0.47)O3 (BKBPO) single perovskite superconductor. We have analyzed elastic constants and moduli at zero and elevated pressures (up to 25 GPa) as well. We also have investigated the anisotropic nature incorporating both the theoretical indices and graphical representations in 2D and 3D dimensions, which reveals a high level of anisotropy. The flatness of the energy bands near EF is a sign of Van-Hf singularity that might increase the electron pairing and origination of high-TC superconductivity. The computed band structure exhibits its metallic characteristics is confirmed by band overlapping. A band of DOS is formed for the strong hybridization of the constituent elements. The orbital electrons of O-2p contribute most dominantly at EF in contrast to all orbital electrons. The orbital electrons at the EF are higher from both the partial density of states and charge density mapping investigation. The coexistence of the electron and hole-like Fermi sheets exhibits the multi-band nature of BKBPO. On the other hand, Fermi surfaces with flat faces promote transport features and Fermi surface nesting as well. The calculated value of the electron-phonon coupling constant ({\lambda} = 1.46) is slightly lower than the isostructural superconductor, which indicates that the studied BKBPO can be treated as a strongly coupled superconductor similar to the reported isostructural perovskite superconductors. Furthermore, the thermodynamic properties have been evaluated and analyzed at elevated temperature and pressure by using harmonic Debye approximation (QHDA).Comment: 20 pages, 7 figures, 6 table

    Hydrothermal Synthesis, Structure, and Superconductivity of Simple Cubic Perovskite (Ba<sub>0.62</sub>K<sub>0.38</sub>)(Bi<sub>0.92</sub>Mg<sub>0.08</sub>)O<sub>3</sub> with <i>T</i><sub>c</sub> ∼ 30 K

    Full text link
    We have synthesized a new superconducting perovskite bismuth oxide by a facile hydrothermal route at 220 °C. The choice of starting materials, their mixing ratios, and the hydrothermal reaction temperature was crucial for obtaining products with superior superconducting properties. The structure of the powder sample was investigated using laboratory X-ray diffraction, high-resolution synchrotron X-ray diffraction (SXRD) data, and electron diffraction (ED) patterns [transmission electron microscopy (TEM) analysis]. The refinement of SXRD data confirmed a simple perovskite-type structure with a cubic cell of <i>a</i> = 4.27864(2) Å [space group <i>Pm</i>3̅<i>m</i> (No. 221)]. Elemental analysis detected magnesium in the final products, and a refinement based on SXRD and inductively coupled plasma data yielded an ideal undistorted simple cubic perovskite-type structure, with the chemical composition (Ba<sub>0.62</sub>K<sub>0.38</sub>)­(Bi<sub>0.92</sub>Mg<sub>0.08</sub>)­O<sub>3</sub>. ED patterns also confirmed the simple cubic perovskite structure; the cube-shaped microstructures and compositional homogeneity on the nanoscale were verified by scanning electron microscopy and TEM analyses, respectively. The fabricated compound exhibited a large shielding volume fraction of about 98% with a maximum <i>T</i><sub>c</sub><sup>mag</sup> of ∼30 K, which was supported by the measured bismuth valence as well. Its electrical resistivity dropped at ∼21 K, and zero resistivity was observed below 7 K. The compound underwent thermal decomposition above 400 °C. Finally, the calculated band structure showed a metallic behavior for this hydrothermally synthesized bismuth oxide

    Hydrothermal Synthesis, Crystal Structure, and Superconductivity of a Double-Perovskite Bi Oxide

    Full text link
    Double-perovskite Bi oxides are a new series of superconducting materials, and their crystal structure and superconducting properties are under investigation. In this paper, we describe the synthesis and characterization of a new double-perovskite material that has an increased superconductive transition temperature of 31.5 K. The structure of the material was examined using powder neutron diffraction (ND), synchrotron X-ray diffraction (SXRD), and transmission electron microscopy (TEM). Rietveld refinement of the sample based on ND and SXRD data confirmed an A-site-ordered (K<sub>1.00</sub>)­(Ba<sub>1.00</sub>)<sub>3</sub>­(Bi<sub>0.89</sub>Na<sub>0.11</sub>)<sub>4</sub>O<sub>12</sub> double-perovskite-type structure with the space group <i>Im</i>3̅<i>m</i> (No. 229). This structural analysis revealed the incorporation of Na with Bi in the structure and a bent bond between (Na, Bi)–O–(Na, Bi). TEM analyses also confirmed a cubic double-perovskite structure. This hydrothermally synthesized compound exhibited a large shielding volume fraction, exceeding 100%, with onset of superconductivity at ∼31.5 K. Its electrical resistivity dropped near onset at ∼28 K, and zero resistivity was confirmed below 13 K. The calculated band structure revealed that the metallicity of the compound and the flatness of the conduction bands near the Fermi level (<i>E</i><sub>F</sub>) are important for the appearance of superconductivity
    corecore