4 research outputs found

    Anharmonic multiphonon origin of the valence plasmon in SrTi1-xNbxO3

    Full text link
    Doped SrTi1-xNbxO3 exhibits superconductivity and a mid-infrared optical response reminiscent of copper-oxide superconductors. Strangely, its plasma frequency, omega_p, increases by a factor of ~3 when cooling from 300 K to 20 K, without any accepted explanation. Here, we present momentum-resolved electron energy loss spectroscopy (M-EELS) measurements of SrTi1-xNbxO3 at nonzero momentum, q. We find that the infrared feature previously identified as a plasmon is present at large q in insulating SrTiO3, where it exhibits the same temperature dependence and may be identified as an anharmonic, multiphonon background. Doping with Nb increases its peak energy and total spectral weight, drawing this background to lower q where it becomes visible in IR optics experiments. We conclude that the "plasmon" in doped SrTi1-xNbxO3 is not a free-carrier mode, but a composite excitation that inherits its unusual properties from the lattice anharmonicity of the insulator.Comment: 5 pages, 4 figure

    Pines’ demon observed as a 3D acoustic plasmon in Sr₂RuO₄

    Get PDF
    Sr2RuO4での「パインズの悪魔」の観測 67年前に予言された金属の奇妙な振る舞いの発見. 京都大学プレスリリース. 2023-08-10.Speak of the Demon: Discovery of strange behavior of new plasmons predicted in the 50s. 京都大学プレスリリース. 2023-09-25.The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a ‘demon’, could exist in three-dimensional (3D) metals containing more than one species of charge carrier. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals, optical properties of metal nanoparticles, soundarons in Weyl semimetals and high-temperature superconductivity in, for example, metal hydrides. Here, we present evidence for a demon in Sr₂RuO₄ from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in the β and γ bands, the demon is gapless with critical momentum qc = 0.08 reciprocal lattice units and room-temperature velocity v = (1.065 ± 0.12) × 10⁵ m s⁻¹ that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle–hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals
    corecore