9,555 research outputs found

    Anisotropic superconducting properties of aligned Sm0.95_{0.95}La0.05_{0.05}FeAsO0.85_{0.85}F0.15_{0.15} microcrystalline powder

    Full text link
    The Sm0.95_{0.95}La0.05_{0.05}FeAsO0.85_{0.85}F0.15_{0.15} compound is a quasi-2D layered superconductor with a superconducting transition temperature Tc_c = 52 K. Due to the Fe spin-orbital related anisotropic exchange coupling (antiferromagnetic or ferromagnetic fluctuation), the tetragonal microcrystalline powder can be aligned at room temperature using the field-rotation method where the tetragonal ab\it{ab}-plane is parallel to the aligned magnetic field Ba_{a} and c\it{c}-axis along the rotation axis. Anisotropic superconducting properties with anisotropic diamagnetic ratio χc/χab∼\chi_{c}/\chi_{ab}\sim 2.4 + 0.6 was observed from low field susceptibility χ\chi(T) and magnetization M(Ba_{a}). The anisotropic low-field phase diagram with the variation of lower critical field gives a zero-temperature penetration depth λc\lambda_{c}(0) = 280 nm and λab\lambda_{ab}(0) = 120 nm. The magnetic fluctuation used for powder alignment at 300 K may be related with the pairing mechanism of superconductivity at lower temperature.Comment: 4 pages, 6 figure

    Identifying network communities with a high resolution

    Full text link
    Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NP-hard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a protein-protein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at http://cic.cs.wustl.edu/qcut/supplemental.pd

    Formation and Acceleration of Uniformly-Filled Ellipsoidal Electron Bunches Obtained via Space-Charge-Driven Expansion from a Cesium-Telluride Photocathode

    Full text link
    We report the experimental generation, acceleration and characterization of a uniformly-filled electron bunch obtained via space-charge-driven expansion (often referred to as "blow-out regime") in an L-band (1.3-GHz) radiofrequency photoinjector. The beam is photoemitted from a Cesium-Telluride semiconductor photocathode using a short (<200<200 fs) ultraviolet laser pulse. The produced electron bunches are characterized with conventional diagnostics and the signatures of their ellipsoidal character is observed. We especially demonstrate the production of ellipsoidal bunches with charges up to ∼0.5\sim0.5 nC corresponding to a ∼20\sim20-fold increase compared to previous experiments with metallic photocathodes.Comment: 9, pages, 13 figure

    Kinetics and Thermodynamics of Antibody Binding to B-Type Natriuretic Peptide

    Get PDF

    Composite-fermion crystallites in quantum dots

    Full text link
    The correlations in the ground state of interacting electrons in a two-dimensional quantum dot in a high magnetic field are known to undergo a qualitative change from liquid-like to crystal-like as the total angular momentum becomes large. We show that the composite-fermion theory provides an excellent account of the states in both regimes. The quantum mechanical formation of composite fermions with a large number of attached vortices automatically generates omposite fermion crystallites in finite quantum dots.Comment: 5 pages, 3 figure
    • …
    corecore