9,628 research outputs found
Impact on the Higgs Production Cross Section and Decay Branching Fractions of Heavy Quarks and Leptons in a Fourth Generation Model
In a fourth generation model with heavy quarks, the production cross section
of the Higgs boson in the gluon-gluon fusion process is significantly increased
due to additional quark loops. In a similar way, the partial decay width of the
decay channels and is modified.
These changes and their impact on the Higgs search are discussed.Comment: 9 pages, 6 figures, minor changes with a few more references adde
Enhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powders
Nonradiative relaxation and photoluminescence quenching in nanocrystalline powders doped with rare-earth elements are of interest in optical bistability, random laser, and other optoelectronic applications. Here, the luminescence quenching of a one-dimensional random medium made of multilayer nanoparticles (Y2O3)(Y2O3) doped with rare-earth elements (Yb3+)(Yb3+) is analyzed by considering the transport, transition, and interaction of the fundamental energy carriers. The nonradiative decay and luminescence quenching in random media are enhanced compared to single crystals, due to multiple scattering, enhanced absorption, and low thermal conductivity. The coherent wave treatment is used to calculate the photon absorption, allowing for field enhancement and photon localization. The luminescent and thermal emission is considered as incoherent. The size-dependent absorption coefficient and penetration depth are observed. The nonradiative decay is identified as a multiphonon relaxation process, and is found to be enhanced compared to bulk materials. The luminescence quenching and nonlinear thermal emission, occurring with increasing irradiation intensity, are predicted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87544/2/104331_1.pd
Ultra-White BaSO4 Paint and Film with Remarkable Radiative Cooling Performance
Radiative cooling is a passive cooling technology that offers great promises to reduce space cooling cost, combat the urban island effect, and alleviate the global warming. To achieve passive daytime radiative cooling, current state-of-the-art solutions often utilize complicated multilayer structures or a reflective metal layer, limiting their applications in many fields. Attempts have been made to achieve passive daytime radiative cooling with single-layer paints, but they often require a thick coating or show partial daytime cooling. In this work, we experimentally demonstrate remarkable full-daytime subambient cooling performance with both BaSO4 nanoparticle films and BaSO4 nanocomposite paints. BaSO4 has a high electron band gap for low solar absorptance and phonon resonance at 9 μm for high sky window emissivity. With an appropriate particle size and a broad particle size distribution, the BaSO4 nanoparticle film reaches an ultrahigh solar reflectance of 97.6% and a high sky window emissivity of 0.96. During field tests, the BaSO4 film stays more than 4.5 °C below ambient temperature or achieves an average cooling power of 117 W/m2. The BaSO4-acrylic paint is developed with a 60% volume concentration to enhance the reliability in outdoor applications, achieving a solar reflectance of 98.1% and a sky window emissivity of 0.95. Field tests indicate similar cooling performance to the BaSO4 films. Overall, our BaSO4-acrylic paint shows a standard figure of merit of 0.77, which is among the highest of radiative cooling solutions while providing great reliability, convenient paint form, ease of use, and compatibility with the commercial paint fabrication process
Recommended from our members
The evolution and arrest of a turbulent stratified oceanic bottom boundary layer over a slope: Upslope regime and pv dynamics
AbstractThe influence of a sloping bottom and stratification on the evolution of an oceanic bottom boundary layer (BBL) in the presence of a mean flow is explored. As a complement to an earlier study by Ruan et al. (https://doi.org/10.1175/JPO-D-18-0079.1) examining Ekman arrest in a downslope regime, this paper describes turbulence and BBL dynamics during Ekman arrest in the upslope regime. In the upslope regime, an enhanced stratification develops in response to the upslope Ekman transport and suppresses turbulence. Using a suite of large-eddy simulations, we show that the BBL evolution can be described in a self-similar framework based on a nondimensional number X/Xa. This nondimensional number is defined as the ratio between the lateral displacement of density surfaces across the slope X and a displacement Xa required for Ekman arrest; the latter can be predicted from external parameters. Additionally, the evolution of the depth-integrated potential vorticity is considered in both upslope and downslope regimes. The PV destruction rate in the downslope regime is found to be twice the production rate in the upslope regime, using the same definition for the bottom mixed layer thickness. It is shown that this asymmetry is associated with the depth scale over which turbulent stresses are active. These results are a step toward improving parameterizations of BBL properties and evolution over sloping topography in coarse-resolution ocean models.</jats:p
The evolution and arrest of a turbulent stratified oceanic bottom boundary layer over a slope: Downslope regime
AbstractThe dynamics of a stratified oceanic bottom boundary layer (BBL) over an insulating, sloping surface depend critically on the intersection of density surfaces with the bottom. For an imposed along-slope flow, the cross-slope Ekman transport advects density surfaces and generates a near-bottom geostrophic thermal wind shear that opposes the background flow. A limiting case occurs when a momentum balance is achieved between the Coriolis force and a restoring buoyancy force in response to the displacement of stratified fluid over the slope: this is known as Ekman arrest. However, the turbulent characteristics that accompany this adjustment have received less attention. We present two estimates to characterize the state of the BBL based on the mixed layer thickness: Ha and HL. The former characterizes the steady Ekman arrested state, and the latter characterizes a relaminarized state. The derivation of HL makes use of a newly defined slope Obukhov length Ls that characterizes the relative importance of shear production and cross-slope buoyancy advection. The value of Ha can be combined with the temporally evolving depth of the mixed layer H to form a nondimensional variable H/Ha that provides a similarity prediction of the BBL evolution across different turbulent regimes. The length scale Ls can also be used to obtain an expression for the wall stress when the BBL relaminarizes. We validate these relationships using output from a suite of three-dimensional large-eddy simulations. We conclude that the BBL reaches the relaminarized state before the steady Ekman arrested state. Calculating H/Ha and H/HL from measurements will provide information on the stage of oceanic BBL development being observed. These diagnostics may also help to improve numerical parameterizations of stratified BBL dynamics over sloping topography.</jats:p
Treatment effect of Bushen Huayu extract on postmenopausal osteoporosis in vivo
Bushen Huayu extract (BSHY), a traditional Chinese medicine, has been demonstrated to treat postmenopausal osteoporosis, however, the underlying mechanism remains to be fully elucidated. The aim of the present study was to investigate the therapeutic effect of BSHY and the mechanisms underlying this effect in an in vivo postmenopausal osteoporosis animal model. A total of 1 g BSHY containing 7.12 μg icariin was prepared. Low-dose BSHY (BSHY-L; 11.1 g/kg), medium-dose BSHY (BSHY-M; 22.2 g/kg) and high-dose BSHY (BSHY-H; 44.4 g/kg) was administered to oophorectomized rats using intragastric infusion. Estradiol (E2), interleukin-6 (IL-6) and serum alkaline phosphatase (ALP) levels, as well as bone density, were determined. It was found that the levels of serum ALP in the BSHY-L, BSHY-M and BSHY-H groups (197.75±41.74, 166.63±44.83 and 165.63±44.90 IU/l, respectively) were significantly decreased compared with the model group (299.13±45.79 IU/l; P<0.05), whilst the levels of E2 (16.89±1.71, 17.95±1.40 and 18.34±1.43 pg/ml, respectively) increased compared with the model group (14.54±1.61; P<0.05). In addition, the levels of IL-6 decreased in the BSHY-L, BSHY-M and BSHY-H groups (91.85±14.81, 82.99±15.65 and 80.54±14.61 pg/ml, respectively) compared with the model group (105.93±16.50 pg/ml; P<0.05). Furthermore, it was demonstrated that BSHY increased the bone density in the BSHY-L, BSHY-M and BSHY-H groups (0.20±0.014, 0.22±0.016 and 0.22±0.017 g/cm2, respectively) compared with the model group (0.19±0.011 g/cm2; P<0.05). BSHY was also found to increase the number of osteoblasts in the BSHY-L, BSHY-M and BSHY-H groups (25.38±2.17, 29.25±2.12 and 30.00±2.39, respectively), compared with in the model group (14.75±2.38; P<0.05), and decrease the number of osteoclasts in the BSHY-L, BSHY-M and BSHY-H groups (4.00±1.85, 4.25±1.39 and 5.75±1.49, respectively) compared with 9.50±1.60 observed in the model group (P<0.05). These results suggest that BSHY is a potential therapeutic drug for the treatment of osteoporosis in vivo. Furthermore, these results suggest that the mechanism by which BSHY decreases the serum levels of IL-6 may be by regulating E2.published_or_final_versio
SGXIO: Generic Trusted I/O Path for Intel SGX
Application security traditionally strongly relies upon security of the
underlying operating system. However, operating systems often fall victim to
software attacks, compromising security of applications as well. To overcome
this dependency, Intel introduced SGX, which allows to protect application code
against a subverted or malicious OS by running it in a hardware-protected
enclave. However, SGX lacks support for generic trusted I/O paths to protect
user input and output between enclaves and I/O devices.
This work presents SGXIO, a generic trusted path architecture for SGX,
allowing user applications to run securely on top of an untrusted OS, while at
the same time supporting trusted paths to generic I/O devices. To achieve this,
SGXIO combines the benefits of SGX's easy programming model with traditional
hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure
debug enclaves to behave like secure production enclaves. SGXIO surpasses
traditional use cases in cloud computing and makes SGX technology usable for
protecting user-centric, local applications against kernel-level keyloggers and
likewise. It is compatible to unmodified operating systems and works on a
modern commodity notebook out of the box. Hence, SGXIO is particularly
promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1
Self-reciprocal polynomials connecting unsigned and signed relative derangements
In this paper, we introduce polynomials (in ) of signed relative
derangements that track the number of signed elements. The polynomials are
clearly seen to be in a sense symmetric. Note that relative derangements are
those without any signed elements, i.e., the evaluations of the polynomials at
. Also, the numbers of all signed relative derangements are given by the
evaluations at . Then the coefficients of the polynomials connect unsigned
and signed relative derangements and show how putting elements with signs
affects the formation of derangements. We first prove a recursion satisfied by
these polynomials which results in a recursion satisfied by the coefficients. A
combinatorial proof of the latter is provided next. We also show that the
sequences of the coefficients are unimodal. Moreover, other results are
obtained. For instance, a kind of dual of a relation between signed
derangements and signed relative derangements previously proved by Chen and
Zhang is presented.Comment: Comments are all welcom
- …