2 research outputs found

    Investigation Of The Interactions Between Pt(II) And Pd(II) Derivatives Of 5,10,15,20-Tetrakis (N-Methyl-4-Pyridyl) Porphyrin And G-Quadruplex DNA

    Get PDF
    G-quadruplexes are non-canonical DNA structures formed by guanine-rich DNA sequences that are implicated in cancer and aging. Understanding how small molecule ligands interact with quadruplexes is essential both to the development of novel anticancer therapeutics and to the design of new quadruplex-selective probes needed for elucidation of quadruplex biological functions. In this work, UV–visible, fluorescence, and circular dichroism spectroscopies, fluorescence resonance energy transfer (FRET) melting assays, and resonance light scattering were used to investigate how the Pt(II) and Pd(II) derivatives of the well-studied 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) interact with quadruplexes formed by the human telomeric DNA, Tel22, and by the G-rich sequences from oncogene promoters. Our results suggest that Pt- and PdTMPyP4 interact with Tel22 via efficient π–π stacking with a binding affinity of 106–107 M−1. Under porphyrin excess, PtTMPyP4 aggregates using Tel22 as a template; the aggregates reach maximum size at [PtTMPyP4]/[Tel22] ~8 and dissolve at [PtTMPyP4]/[Tel22] ≤ 2. FRET assays reveal that both porphyrins are excellent stabilizers of human telomeric DNA, with stabilization temperature of 30.7 ± 0.6 °C for PtTMPyP4 and 30.9 ± 0.4 °C for PdTMPyP4 at [PtTMPyP4]/[Tel22] = 2 in K+ buffer, values significantly higher as compared to those for TMPyP4. The porphyrins display modest selectivity for quadruplex vs. duplex DNA, with selectivity ratios of 150 and 330 for Pt- and PdTMPyP4, respectively. This selectivity was confirmed by observed ‘light switch’ effect: fluorescence of PtTMPyP4 increases significantly in the presence of a variety of DNA secondary structures, yet the strongest effect is produced by quadruplex DNA

    Lowering The Overall Charge On TMPyP4 Improves Its Selectivity For G-Quadruplex DNA

    No full text
    Ligands that stabilize non-canonical DNA structures called G-quadruplexes (GQs) might have applications in medicine as anti-cancer agents, due to the involvement of GQ DNA in a variety of cancer-related biological processes. Five derivatives of 5,10,15,20–tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4), where a N-methylpyridyl group was replaced with phenyl (4P3), 4-aminophenyl (PN3M), 4-phenylamidoproline (PL3M), or 4-carboxyphenyl (PC3M and P2C2M) were investigated for their interactions with human telomeric DNA (Tel22) using fluorescence resonance energy transfer (FRET) assay, and UV-visible and circular dichroism spectroscopies in K+ buffer. The molecules are cationic or zwitterionic with an overall charge of 3+ (4P3, PN3M, and PL3M), 2+ (PC3M) or neutral (P2C2M). All porphyrins except P2C2M stabilize human telomeric DNA in FRET assays by ∼20 °C at 5 eq CD melting experiments suggest that 4P3 is the most stabilizing ligand with a stabilization temperature of 16.8 °C at 4 eq. Importantly, 4P3, PC3M and PL3M demonstrate excellent selectivity for quadruplexes, far superior to that of TMPyP4. Binding constants, determined using UV-vis titrations, correlate with charge: triply cationic 4P3, PN3M and PL3M display Ka of 5–9 μM−1, doubly cationic PC3M displays Ka of 1 μM−1, and neutral P2C2M displays weak-to-no binding. UV-vis data suggest that binding interactions are driven by electrostatic attractions and that the binding mode may be base-stacking (or end-stacking) judging by the high values of red shift (15–20 nm) and hypochromicity (40–50%). We conclude that lowering the charge on TMPyP4 to 3+ can achieve the desired balance between stabilizing ability, affinity, and high selectivity required for an excellent quadruplex ligand
    corecore