27 research outputs found

    Nanostructured Indium Tin Oxides and Other Transparent Conducting Oxides: Characteristics and Applications in the THz Frequency Range

    Get PDF
    Transparent conductors are essential for optoelectronic components operating in the far-infrared or terahertz (THz) frequency range. Indium tin oxide (ITO), extensively used in the visible, is semi-transparent in the far-infrared frequency range. Other types of bulk transparent conducting oxides (TCOs), such as aluminum-doped zinc oxide (AZO) and aluminum and ytterbium-doped zinc oxide (AYZO), have not yet been explored for THz applications. Recently, biomimic nanomaterials have been shown to exhibit exotic optical properties, e.g., broadband, omnidirectional antireflective properties. Indeed, nanostructured ITO was found to exhibit the above desirable characteristics. In this chapter, we describe the fabrication and characterization of several TCOs, including ITO nanomaterials and several types of bulk TCO thin films, e.g., AZO and AYZO. Performance of THz phase shifters with ITO nanomaterials as transparent electrodes and liquid crystals for functionalities is presented

    Liquid-Crystal-Based Phase Gratings and Beam Steerers for Terahertz Waves

    Get PDF
    We review our theoretical and experimental studies on a class of liquid crystal (LC) photonic devices, i.e., terahertz (THz) phase gratings and beam steerers by using LCs. Such gratings can function as a THz polarizer and tunable THz beam splitters. The beam splitting ratio of the zeroth-order diffraction to the first-order diffraction by the grating can be tuned from 10:1 to 3:5. Gratings with two different base dimensions were prepared. The insertion loss is lower by approximately 2.5 dB for the one with the smaller base. The response times of the gratings were also studied and were long (tens of seconds) as expected because of the thick LC layer used. Accordingly, the devices are not suitable for applications that require fast modulation. However, they are suitable for instrumentation or apparatuses that require precise control, e.g., an apparatus requiring a fixed beam splitting ratio with occasional fine tuning. Schemes for speeding up the device responses were proposed. Based on the grating structure, we also achieved an electrically tunable THz beam steerer. Broadband THz radiation can be steered by 8.5° with respect to the incident beam by varying the driving voltages to yield the designed phase gradient

    Nonlinear Magneto-Optics of Fe Monolayers from first principles: Structural dependence and spin-orbit coupling strength

    Full text link
    We calculate the nonlinear magneto-optical response of free-standing fcc (001), (110) and (111) oriented Fe monolayers. The bandstructures are determined from first principles using a full-potential LAPW method with the additional implementation of spin-orbit coupling. The variation of the spin-orbit coupling strength and the nonlinear magneto-optical spectra upon layer orientation are investigated. We find characteristic differences which indicate an enhanced sensitivity of nonlinear magneto-optics to surface orientation and variation of the in-plane lattice constants. In particular the crossover from onedimensional stripe structures to twodimensional films of (111) layers exhibits a clean signature in the nonlinear Kerr-spectra and demonstrates the versatility of nonlinear magneto-optics as a tool for in situ thin-film analysis.Comment: 28 pages, RevTeX, psfig, submitted to PR

    Two-dimensional O<SUB>2</SUB> adsorbed on graphite

    No full text
    Properties of two-dimensional O2 adsorbed on graphite are calculated in the extremely low-coverage &#948; region and for monolayers, with use of pattern-recognition optimization and Monte Carlo techniques. Equilibrium configurations and orientations, orientational order-disorder, melting, and dissociation transitions are predicted at various O2 densities. Phase characteristics, including a plastic crystallite phase, are compared with experiment
    corecore