5,984 research outputs found
Magnetism in 2D BNO and BSiN: polarized itinerant and local electrons
We use density functional theory based first-principles methods to study the
magnetism in a 2D hexagonal BN sheet induced by the different concentrations of
oxygen and silicon atoms substituting for nitrogen (O) and boron
(Si) respectively. We demonstrate the possible formation of three
distinct phases based on the magnetization energy calculated self-consistently
for the ferromagnetic (ME) and antiferromagnetic
(ME) states, i.e. the paramagnetic phase with
ME=ME, the ferromagnetic phase with
MEME and finally the polarized itinerant
electrons with finite ME but zero ME. While
the O system was found to exist in all three phases, no tendency
towards the formation of the polarized itinerant electrons was observed for the
Si system though the existence of the other two phases was
ascertained. The different behavior of these two systems is associated with the
diverse features in the magnetization energy as a function of the oxygen and
silicon concentrations. Finally, the robustness of the polarized itinerant
electron phase is also discussed with respect to the O substitute atom
distributions and the applied strains to the system.Comment: accepted by RP
Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement
The enhanced local fields around plasmonic structures can lead to enhancement of the excitation and modification of the emission quantum yield of fluorophores. So far, high enhancement of fluorescence intensity from dye molecules was demonstrated using bow-tie gap antenna made by e-beam lithography. However, the high manufacturing cost and the fact that currently there are no effective ways to place fluorophores only at the gap prevent the use of these structures for enhancing fluorescence-based biochemical assays. We report on the simultaneous modification of fluorescence intensity and lifetime of dye-labeled DNA in the presence of aggregated silver nanoparticles. The nanoparticle aggregates act as efficient plasmonic antennas, leading to more than 2 orders of magnitude enhancement of the average fluorescence. This is comparable to the best-reported fluorescence enhancement for a single molecule but here applies to the average signal detected from all fluorophores in the system. This highlights the remarkable efficiency of this system for surface-enhanced fluorescence. Moreover, we show that the fluorescence intensity enhancement varies with the plasmon resonance position and measure a significant reduction (300×) of the fluorescence lifetime. Both observations are shown to be in agreement with the electromagnetic model of surface-enhanced fluorescence
Expression of Green Fluorescence Protein (GFP) in Zebrafish Muscle through Injection: A Gene Therapy Model
Expression of the target gene is important for gene therapy. Presently, localized transgenesis is used for gene therapy which can be achieved by a target gene expression. Here, we have reported the plasmid mediated gene therapy to zebrafish model. For this purpose, we have chosen green fluorescent protein (GFP) as a target gene because the expression can be detected easily. GFP was inserted in a plasmid vector, pQE30 to develop the vector pQE30GFP. The plasmid pQE30GFP was constructed form plasmid, pQE30 and pEGFPC2. pQE30GFP injected directly in one group of fish into the muscle where luciferase expression was noted. In another group, after injection electroporation was performed where we have also noted luciferase expression; but, electroporation cause muscle injury to the zebrafish. In our case, the expression was very strong at the site of injection in first group in compare to electroporation group and in both the cases expression was stable more than two weeks
Using Moored Arrays and Hyperspectral Aerial Imagery to Develop Nutrient Criteria for New Hampshire\u27s Estuaries
Increasing nitrogen concentrations and declining eelgrass beds in Great Bay, NH are clear indicators of impending problems for the state’s estuaries. A workgroup established in 2005 by the NH Department of Environmental Services and the NH Estuaries Project (NHEP) adopted eelgrass survival as the water quality target for nutrient criteria development for NH’s estuaries. In 2007, the NHEP received a grant from the U.S. Environmental Protection Agency to collect water quality information including that from moored sensors and hyper-spectral imagery data of the Great Bay Estuary. Data from the Great Bay Coastal Buoy, part of the regional Integrated Ocean Observing System (IOOS), were used to derive a multivariate model of water clarity with phytoplankton, Colored Dissolved Organic Matter (CDOM), and non-algal particles. Non-algal particles include both inorganic and organic matter. Most of the temporal variability in the diffuse attenuation coefficient of Photosynthetically Available Radiation (PAR) was associated with non-algal particles. However, on a mean daily basis non-algal particles and CDOM contributed a similar fraction (~30 %) to the attenuation of light. The contribution of phytoplankton was about a third of the other two optically important constituents. CDOM concentrations varied with salinity and magnitude of riverine inputs demonstrating its terrestrial origin. Non-algal particle concentration also varied with river flow but also wind driven resuspension. Twelve of the NHEP estuarine assessment zones were observed with the hyperspectral aerial imagery on August 29 and October 17. A concurrent in situ effort included buoy measurements, continuous along-track sampling, discrete water grab samples, and vertical profiles of light attenuation. PAR effective attenuation coefficients retrieved from deep water regions in the imagery agreed well with in-situ observations. Water clarity was lower and optically important constituent concentrations were higher in the tributaries. Eelgrass survival depth, estimated as the depth at which 22% of surface light was available, ranged from less than half a meter to over two meters. The best water clarity was found in the Great Bay (GB), Little Bay (LB), and Lower Piscataqua River (LPR) assessment zones. Absence of eelgrass from these zones would indicate controlling factors other than water clarity
Liquid-gas Phase Transition in Strange Hadronic Matter with Weak Y-Y Interaction
The liquid-gas phase transition in strange hadronic matter is reexamined by
using the new parameters about the interaction deduced from
recent observation of double hypernucleus. The
extended Furnstahl-Serot-Tang model with nucleons and hyperons is utilized. The
binodal surface, the limit pressure, the entropy, the specific heat capacity
and the Caloric curves are addressed. We find that the liquid-gas phase
transition can occur more easily in strange hadronic matter with weak Y-Y
interaction than that of the strong Y-Y interaction.Comment: 10 pages, 7 figure
Ab initio Studies of the Possible Magnetism in BN Sheet by Non-magnetic Impurities and Vacancies
We performed first-principles calculations to investigate the possible
magnetism induced by the different concentrations of non-magnetic impurities
and vacancies in BN sheet. The atoms of Be, B, C, N, O, Al and Si are used to
replace either B or N in the systems as impurities. We discussed the changes in
density of states as well as the extent of the spatial distributions of the
defect states, the possible formation of magnetic moments, the magnitude of the
magnetization energies and finally the exchange energies due to the presence of
these defects. It is shown that the magnetization energies tend to increase as
the concentrations of the defects decreases in most of the defect systems which
implies a definite preference of finite magnetic moments. The calculated
exchange energies are in general tiny but not completely insignificant for two
of the studied defect systems, i.e. one with O impurities for N and the other
with B vacancies.Comment: 8 pages, 10 figures, submitted to Phys. Rev.
Numerical simulation of Quasi-Normal Modes in time-dependent background
We study the massless scalar wave propagation in the time-dependent
Schwarzschild black hole background. We find that the Kruskal coordinate is an
appropriate framework to investigate the time-dependent spacetime. A
time-dependent scattering potential is derived by considering dynamical black
hole with parameters changing with time. It is shown that in the quasinormal
ringing both the decay time-scale and oscillation are modified in the
time-dependent background.Comment: 10 pages, 8 figures; reference adde
- …