4,167 research outputs found

    Noncontextuality with Marginal Selectivity in Reconstructing Mental Architectures

    Full text link
    We present a general theory of series-parallel mental architectures with selectively influenced stochastically non-independent components. A mental architecture is a hypothetical network of processes aimed at performing a task, of which we only observe the overall time it takes under variable parameters of the task. It is usually assumed that the network contains several processes selectively influenced by different experimental factors, and then the question is asked as to how these processes are arranged within the network, e.g., whether they are concurrent or sequential. One way of doing this is to consider the distribution functions for the overall processing time and compute certain linear combinations thereof (interaction contrasts). The theory of selective influences in psychology can be viewed as a special application of the interdisciplinary theory of (non)contextuality having its origins and main applications in quantum theory. In particular, lack of contextuality is equivalent to the existence of a "hidden" random entity of which all the random variables in play are functions. Consequently, for any given value of this common random entity, the processing times and their compositions (minima, maxima, or sums) become deterministic quantities. These quantities, in turn, can be treated as random variables with (shifted) Heaviside distribution functions, for which one can easily compute various linear combinations across different treatments, including interaction contrasts. This mathematical fact leads to a simple method, more general than the previously used ones, to investigate and characterize the interaction contrast for different types of series-parallel architectures.Comment: published in Frontiers in Psychology: Cognition 1:12 doi: 10.3389/fpsyg.2015.00735 (special issue "Quantum Structures in Cognitive and Social Science"

    STM Studies of TbTe3: Evidence for a fully Incommensurate Charge Density Wave

    Full text link
    We observe unidirectional charge density wave ordering on the cleaved surface of TbTe3 with a Scanning Tunneling Microscope at ~6 K. The modulation wave-vector q_{CDW} as determined by Fourier analysis is 0.71 +/- 0.02 * 2 pi/c. (Where c is one edge of the in-plane 3D unit cell.) Images at different tip-sample voltages show the unit cell doubling effects of dimerization and the layer below. Our results agree with bulk X-ray measurements, with the addition of ~(1/3) * 2 pi/a ordering perpendicular to the CDW. Our analysis indicates that the CDW is incommensurate.Comment: 4 pages, 4 figure

    Online Data Stream Learning and Classification with Limited Labels

    Get PDF
    Mining data streams such as Internet traffic andnetwork security is complex. Due to the difficulty of storage, datastreams analytics need to be done in one scan. This limits thetime to observe stream feature and hence, further complicatesthe data mining processes. Traditional supervised data miningwith batch training natural is not suitable to mine data streams.This paper proposes an algorithm for online data streamclassification and learning with limited labels using selective selftrainingsemi-supervised classification. The experimental resultsshow it is able to achieve up to 99.6% average accuracy for 10%labeled data and 98.6% average accuracy for 1% labeled data. Itcan classify up to 34K instances per second

    Fermi Surface reconstruction in the CDW state of CeTe3 observed by photoemission

    Full text link
    CeTe3 is a layered compound where an incommensurate Charge Density Wave (CDW) opens a large gap (400 meV) in optimally nested regions of the Fermi Surface (FS), whereas other sections with poorer nesting remain ungapped. Through Angle-Resolved Photoemission, we identify bands backfolded according to the CDW periodicity. They define FS pockets formed by the intersection of the original FS and its CDW replica. Such pockets illustrate very directly the role of nesting in the CDW formation but they could not be detected so far in a CDW system. We address the reasons for the weak intensity of the folded bands, by comparing different foldings coexisting in CeTe3
    • …
    corecore