698 research outputs found
Possible Contribution to Electron and Positron Fluxes from Pulsars and their Nebulae
The AMS-02 experiment confirms the excess of positrons in cosmic rays (CRs)
for energy above 10 GeV with respect to the secondary production of positrons
in the interstellar medium. This is interpreted as evidence of the existence of
a primary source of these particles. Possible candidates are dark matter or
astrophysical sources. In this work we discuss the possible contribution due to
pulsars and their nebulae. Our key assumption is that the primary spectrum of
electrons and positrons at the source is the same of the well known photon
spectrum observed from gamma-rays telescopes. Using a diffusion model in the
Galaxy we propagate the source spectra up to the Solar System. We compare our
results with the recent experiments and with the LIS modelComment: To appear in the Proceedings of the 14th ICATPP Conference, Villa
Olmo 23-27 September 201
Pulsar Wind Nebulae as a source of the observed electron and positron excess at high energy: the case of Vela-X
We investigate, in terms of production from pulsars and their nebulae, the
cosmic ray positron and electron fluxes above GeV, observed by the
AMS-02 experiment up to 1 TeV. We concentrate on the Vela-X case. Starting from
the gamma-ray photon spectrum of the source, generated via synchrotron and
inverse Compton processes, we estimated the electron and positron injection
spectra. Several features are fixed from observations of Vela-X and unknown
parameters are borrowed from the Crab nebula. The particle spectra produced in
the pulsar wind nebula are then propagated up to the Solar System, using a
diffusion model. Differently from previous works, the omnidirectional intensity
excess for electrons and positrons is obtained as a difference between the
AMS-02 data and the corresponding local interstellar spectrum. An equal amount
of electron and positron excess is observed and we interpreted this excess
(above 100 GeV in the AMS-02 data) as a supply coming from Vela-X. The
particle contribution is consistent with models predicting the gamma-ray
emission at the source. The input of a few more young pulsars is also allowed,
while below 100 GeV more aged pulsars could be the main contributors.Comment: Accepted for publication in Journal of High Energy Astrophysics
(2015
Computations for Sustainability
Parallel to the need for new technologies and renewable energy resources to address sustainability, the emerging field of Artificial Intelligence (AI) has experienced continuous high-speed growth in the application of its capabilities of modelling, managing, processing, and making sense of data in the entire areas related to the production and management of energy. Moreover, the current trend indicates that the energy supply and management process will eventually be controlled by autonomous smart systems that optimize energy distribution operations based on integrative data-driven Machine Learning (ML) techniques or other types of computational methods
Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary-Magnetic-Field Polar Correction
The cosmic rays differential intensity inside the heliosphere, for energy
below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field
polarity. This variation, termed solar modulation, is described using a 2-D
(radius and colatitude) Monte Carlo approach for solving the Parker transport
equation that includes diffusion, convection, magnetic drift and adiabatic
energy loss. Since the whole transport is strongly related to the
interplanetary magnetic field (IMF) structure, a better understanding of his
description is needed in order to reproduce the cosmic rays intensity at the
Earth, as well as outside the ecliptic plane. In this work an interplanetary
magnetic field model including the standard description on ecliptic region and
a polar correction is presented. This treatment of the IMF, implemented in the
HelMod Monte Carlo code (version 2.0), was used to determine the effects on the
differential intensity of Proton at 1\,AU and allowed one to investigate how
latitudinal gradients of proton intensities, observed in the inner heliosphere
with the Ulysses spacecraft during 1995, can be affected by the modification of
the IMF in the polar regions.Comment: accepted for publication inAdvances in Astronom
Reduced-order semi-implicit schemes for fluid-structure interaction problems
POD-Galerkin reduced-order models (ROMs) for fluid-structure interaction problems (incompressible fluid and thin structure) are proposed in this paper. Both the high-fidelity and reduced-order methods are based on a Chorin-Temam operator-splitting approach. Two different reduced-order methods are proposed, which differ on velocity continuity condition, imposed weakly or strongly, respectively. The resulting ROMs are tested and compared on a representative haemodynamics test case characterized by wave propagation, in order to assess the capabilities of the proposed strategies
A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries
A model order reduction technique is combined with an embedded boundary finite element method with a POD-Galerkin strategy. The proposed methodology is applied to parametrized heat transfer problems and we rely on a sufficiently refined shape-regular background mesh to account for parametrized geometries. In particular, the employed embedded boundary element method is the Shifted Boundary Method (SBM), recently proposed in Main and Scovazzi, J Comput Phys [17]. This approach is based on the idea of shifting the location of true boundary conditions to a surrogate boundary, with the goal of avoiding cut cells near the boundary of the computational domain. This combination of methodologies has multiple advantages. In the first place, since the Shifted Boundary Method always relies on the same background mesh, there is no need to update the discretized parametric domain. Secondly, we avoid the treatment of cut cell elements, which usually need particular attention. Thirdly, since the whole background mesh is considered in the reduced basis construction, the SBM allows for a smooth transition of the reduced modes across the immersed domain boundary. The performances of the method are verified in two dimensional heat transfer numerical examples
Suprathermal particle addition to solar wind pressure: possible influence on magnetospheric transmissivity of low energy cosmic rays?
Energetic (suprathermal) solar particles, accelerated in the interplanetary
medium, contribute to the solar wind pressure, in particular during high solar
activity periods. We estimated the effect of the increase of solar wind
pressure due to suprathermal particles on magnetospheric transmissivity of
galactic cosmic rays in the case of one recent solar event
HelMod in the works: from direct observations to the local interstellar spectrum of cosmic-ray electrons
The local interstellar spectrum (LIS) of cosmic-ray (CR) electrons for the
energy range 1 MeV to 1 TeV is derived using the most recent experimental
results combined with the state-of-the-art models for CR propagation in the
Galaxy and in the heliosphere. Two propagation packages, GALPROP and HelMod,
are combined to provide a single framework that is run to reproduce direct
measurements of CR species at different modulation levels, and at both
polarities of the solar magnetic field. An iterative maximum-likelihood method
is developed that uses GALPROP-predicted LIS as input to HelMod, which provides
the modulated spectra for specific time periods of the selected experiments for
model-data comparison. The optimized HelMod parameters are then used to adjust
GALPROP parameters to predict a refined LIS with the procedure repeated subject
to a convergence criterion. The parameter optimization uses an extensive data
set of proton spectra from 1997-2015. The proposed CR electron LIS accommodates
both the low-energy interstellar spectra measured by Voyager 1 as well as the
high-energy observations by PAMELA and AMS-02 that are made deep in the
heliosphere; it also accounts for Ulysses counting rate features measured out
of the ecliptic plane. The interstellar and heliospheric propagation parameters
derived in this study agree well with our earlier results for CR protons,
helium nuclei, and anti-protons propagation and LIS obtained in the same
framework.Comment: 11 pages, 14 figures, 4 tables; ApJ, in pres
- …