329 research outputs found
Coherent Destruction of Photon Emission from a Single Molecule Source
The behavior of a single molecule driven simultaneously by a laser and by an
electric radio frequency field is investigated using a non-Hermitian
Hamiltonian approach. Employing the renormalization group method for
differential equations we calculate the average waiting time for the first
photon emission event to occur, and determine the conditions for the
suppression and enhancement of photon emission. An abrupt transition from
localization-like behavior to delocalization behavior is found.Comment: 5 pages, 4 figure
Suspensions of supracolloidal magnetic polymers: self-assembly properties from computer simulations
We study self-assembly in suspensions of supracolloidal polymer-like
structures made of crosslinked magnetic particles. Inspired by self-assembly
motifs observed for dipolar hard spheres, we focus on four different topologies
of the polymer-like structures: linear chains, rings, Y-shaped and X-shaped
polymers. We show how the presence of the crosslinkers, the number of beads in
the polymer and the magnetic interparticle interaction affect the structure of
the suspension. It turns out that for the same set of parameters, the rings are
the least active in assembling larger structures, whereas the system of Y- and
especially X-like magnetic polymers tend to form very large loose aggregates
Ballistic dynamics of a convex smooth-wall billiard with finite escape rate along the boundary
We focus on the problem of an impurity-free billiard with a random
position-dependent boundary coupling to the environment. The response functions
of such an open system can be obtained non-perturbatively from a supersymmetric
generating functional. The derivation of this functional is based on averaging
over the escape rates and results in a non-linear ballistic -model,
characterized by system-specific parameters. Particular emphasis is placed on
the {}``whispering gallery modes'' as the origin of surface diffusion modes in
the limit of large dimensionless conductance.Comment: 12 pages, no figure
Feasibility of a Small, Rapid Optical-to-IR Response, Next Generation Gamma Ray Burst Mission
We present motivations for and study feasibility of a small, rapid optical to
IR response gamma ray burst (GRB) space observatory. By analyzing existing GRB
data, we give realistic detection rates for X-ray and optical/IR instruments of
modest size under actual flight conditions. Given new capabilities of fast
optical/IR response (about 1 s to target) and simultaneous multi-band imaging,
such an observatory can have a reasonable event rate, likely leading to new
science. Requiring a Swift-like orbit, duty cycle, and observing constraints, a
Swift-BAT scaled down to 190 square cm of detector area would still detect and
locate about 27 GRB per yr. for a trigger threshold of 6.5 sigma. About 23
percent of X-ray located GRB would be detected optically for a 10 cm diameter
instrument (about 6 per yr. for the 6.5 sigma X-ray trigger).Comment: Elaborated text version of a poster presented at 2012 Malaga/Marbella
symposiu
Loss of Pi-Junction Behaviour in an Interacting Impurity Josephson Junction
Using a generalization of the non-crossing approximation which incorporates
Andreev reflection, we study the properties of an infinite-U Anderson impurity
coupled to two superconducting leads. In the regime where and
are comparable, we find that the position of the sub-gap resonance in the
impurity spectral function develops a strong anomalous phase dependence-- its
energy is a minimum when the phase difference between the superconductors is
equal to . Calculating the Josephson current through the impurity, we find
that -junction behaviour is lost as the position of the bound-state moves
above the Fermi energy.Comment: 4 pages, 4 figures; labelling of Fig. 3 corrected; final published
form, only trivial change
Self-assembly of polymer-like structures of magnetic colloids: Langevin dynamics study of basic topologies
We study the self-assembly of colloidal magnetic particles permanently cross-linked into polymer-like structures with different topologies, that we call supracolloidal magnetic polymers (SMPs). In order to understand the influence of the interparticle permanent links, we investigate SMPs holding the main topologies observed in the self-assembly of non-cross-linked magnetic particles via grand canonical Monte Carlo simulations: chains, rings and simple branched structures. Here, using molecular dynamics simulations, we focus on systems of SMP pairs. Our results evidence that the presence of crosslinkers leads to the formation of new types of aggregates, not previously observed for individual magnetic colloids. © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.This research has been supported by the Russian Science Foundation [grant number 17-72-10145]. J.J.C. and T.S. acknowledge funding from a grant awarded by the Conselleria d’Innovació, Recerca i Turisme del Govern de les Illes Balears and the European Social Fund (ESF). T.S. also acknowledges financial support from the Spanish Ministerio de Economía y Competi-tividad and the European Regional Development Fund, [Project number FIS20015-63628-C2-2-R] (AEI/FEDER, UE). P.A.S and S.S.K acknowledge support from the Austrian Research Fund (FWF) [START-Projekt Y 627-N27]. S.S.K. also acknowledges support from the European Commission ETN-COLLDENSE [H2020-MSCA-ITN-2014], [grant number 642774]. The authors would like to thank F. Sciortino for his valuable contribution to the GCMC simulation results
Quantum Mechanics of the Vacuum State in Two-Dimensional QCD with Adjoint Fermions
A study of two-dimensional QCD on a spatial circle with Majorana fermions in
the adjoint representation of the gauge groups SU(2) and SU(3) has been
performed. The main emphasis is put on the symmetry properties related to the
homotopically non-trivial gauge transformations and the discrete axial symmetry
of this model. Within a gauge fixed canonical framework, the delicate interplay
of topology on the one hand and Jacobians and boundary conditions arising in
the course of resolving Gauss's law on the other hand is exhibited. As a
result, a consistent description of the residual gauge symmetry (for
SU(N)) and the ``axial anomaly" emerges. For illustrative purposes, the vacuum
of the model is determined analytically in the limit of a small circle. There,
the Born-Oppenheimer approximation is justified and reduces the vacuum problem
to simple quantum mechanics. The issue of fermion condensates is addressed and
residual discrepancies with other approaches are pointed out.Comment: 44 pages; for hardcopies of figures, contact
[email protected]
Essential Role for endogenous siRNAs during meiosis in mouse oocytes.
The RNase III enzyme DICER generates both microRNAs (miRNAs) and endogenous short interfering RNAs (endo-siRNAs). Both small RNA species silence gene expression post-transcriptionally in association with the ARGONAUTE (AGO) family of proteins. In mammals, there are four AGO proteins (AGO1-4), of which only AGO2 possesses endonucleolytic activity. siRNAs trigger endonucleolytic cleavage of target mRNAs, mediated by AGO2, whereas miRNAs cause translational repression and mRNA decay through association with any of the four AGO proteins. Dicer deletion in mouse oocytes leads to female infertility due to defects during meiosis I. Because mouse oocytes express both miRNAs and endo-siRNAs, this phenotype could be due to the absence of either class of small RNA, or both. However, we and others demonstrated that miRNA function is suppressed in mouse oocytes, which suggested that endo-siRNAs, not miRNAs, are essential for female meiosis. To determine if this was the case we generated mice that express a catalytically inactive knock-in allele of Ago2 (Ago2ADH) exclusively in oocytes and thereby disrupted the function of siRNAs. Oogenesis and hormonal response are normal in Ago2ADH oocytes, but meiotic maturation is impaired, with severe defects in spindle formation and chromosome alignment that lead to meiotic catastrophe. The transcriptome of these oocytes is widely perturbed and shows a highly significant correlation with the transcriptome of Dicer null and Ago2 null oocytes. Expression of the mouse transcript (MT), the most abundant transposable element in mouse oocytes, is increased. This study reveals that endo-siRNAs are essential during meiosis I in mouse females, demonstrating a role for endo-siRNAs in mammals.This research was supported by the National Institutes of Health Grants HD022681 (to RMS), and R37 GM062534-14 (to GJH), National Human Genome Research Institute 5T32HG000046-13 (to FL) and by a kind gift from Kathryn W. Davis. GJH is an investigator of the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pgen.100501
Superinsulator Phase of Two-Dimensional Superconductors
Using path-integral Quantum Monte Carlo we study the low-temperature phase
diagram of a two-dimensional superconductor within a phenomenological model,
where vortices have a finite mass and move in a dissipative environment modeled
by a Caldeira-Leggett term. The quantum vortex liquid at high magnetic fields
exhibits superfluidity and thus corresponds to a {\em superinsulating} phase
which is characterized by a nonlinear voltage-current law for an infinite
system in the absence of pinning. This superinsulating phase is shifted to
higher magnetic fields in the presence of dissipation.Comment: 8 pages, 3 figures, to appear in Phys. Rev. Lett. (Oktober 1998
Variance of transmitted power in multichannel dissipative ergodic structures invariant under time reversal
We use random matrix theory (RMT) to study the first two moments of the wave
power transmitted in time reversal invariant systems having ergodic motion.
Dissipation is modeled by a number of loss channels of variable coupling
strength. To make a connection with ultrasonic experiments on ergodic
elastodynamic billiards, the channels injecting and collecting the waves are
assumed to be negligibly coupled to the medium, and to contribute essentially
no dissipation. Within the RMT model we calculate the quantities of interest
exactly, employing the supersymmetry technique. This approach is found to be
more accurate than another method based on simplifying naive assumptions for
the statistics of the eigenfrequencies and the eigenfunctions. The results of
the supersymmetric method are confirmed by Monte Carlo numerical simulation and
are used to reveal a possible source of the disagreement between the
predictions of the naive theory and ultrasonic measurements.Comment: 10 pages, 2 figure
- …