211 research outputs found

    Associations of Plasma Phospholipid Omega-6 and Omega-3 Polyunsaturated Fatty Acid Levels and MRI Measures of Cardiovascular Structure and Function: The Multiethnic Study of Atherosclerosis

    Get PDF
    Background. The association between plasma omega-6 fatty acids and cardiovascular disease (CVD) is unclear, and discrepancy remains concerning the cardiovascular benefit of the omega-3 fatty acid alpha-linolenic acid. Methods. Associations of plasma phospholipid fatty acid levels (arachidonic acid, linoleic acid, eicosapentaenoic acid, docosahexaenoic acid (DHA), and alpha-linolenic acid) with cardiac magnetic resonance imaging measures of left ventricular (LV) mass, LV volume, ejection fraction, stroke volume, and aortic distensibility were investigated in 1,274 adults. Results. Results of multivariate analysis showed no statistically significant associations of plasma omega-6 or omega-3 levels with cardiac magnetic resonance imaging measures. Stratification by gender revealed a positive association between DHA and LV mass in women (ÎČ = 1.89, P = 0.02; P interaction = 0.003) and a trend for a positive association between DHA and ejection fraction in men (ÎČ = 0.009, P = 0.05; P interaction = 0.03). Conclusion. Additional research is warranted to clarify the effects of plasma DHA on cardiac structure and function in women versus men

    The impact of fatty acids biosynthesis on the risk of cardiovascular diseases in Europeans and East Asians:A Mendelian randomization study

    Get PDF
    Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk

    Whole-Genome Sequencing analysis of Human Metabolome in Multi-Ethnic Populations

    Get PDF
    Circulating metabolite levels may reflect the state of the human organism in health and disease, however, the genetic architecture of metabolites is not fully understood. We have performed a whole-genome sequencing association analysis of both common and rare variants in up to 11,840 multi-ethnic participants from five studies with up to 1666 circulating metabolites. We have discovered 1985 novel variant-metabolite associations, and validated 761 locus-metabolite associations reported previously. Seventy-nine novel variant-metabolite associations have been replicated, including three genetic loci located on the X chromosome that have demonstrated its involvement in metabolic regulation. Gene-based analysis have provided further support for seven metabolite-replicated loci pairs and their biologically plausible genes. Among those novel replicated variant-metabolite pairs, follow-up analyses have revealed that 26 metabolites have colocalized with 21 tissues, seven metabolite-disease outcome associations have been putatively causal, and 7 metabolites might be regulated by plasma protein levels. Our results have depicted the genetic contribution to circulating metabolite levels, providing additional insights into understanding human disease
    • 

    corecore