3 research outputs found

    Circuits in random graphs: from local trees to global loops

    Full text link
    We compute the number of circuits and of loops with multiple crossings in random regular graphs. We discuss the importance of this issue for the validity of the cavity approach. On the one side we obtain analytic results for the infinite volume limit in agreement with existing exact results. On the other side we implement a counting algorithm, enumerate circuits at finite N and draw some general conclusions about the finite N behavior of the circuits.Comment: submitted to JSTA

    Cliques and duplication-divergence network growth

    Full text link
    A population of complete subgraphs or cliques in a network evolving via duplication-divergence is considered. We find that a number of cliques of each size scales linearly with the size of the network. We also derive a clique population distribution that is in perfect agreement with both the simulation results and the clique statistic of the protein-protein binding network of the fruit fly. In addition, we show that such features as fat-tail degree distribution, various rates of average degree growth and non-averaging, revealed recently for only the particular case of a completely asymmetric divergence, are present in a general case of arbitrary divergence.Comment: 7 pages, 6 figure
    corecore