13 research outputs found

    Social media use, attitudes, behaviours and perceptions of online professionalism amongst dental students

    Get PDF
    Use of social media has increased amongst health professionals. This has benefits for patient care but also introduces risks for confidentiality and professional fitness to practise. This study aimed to examine dental student attitudes towards professional behaviour on social media. The secondary aim was to establish the extent and nature of social media use and exposure to potentially unprofessional behaviours. A cross-sectional study was carried out in one dental school. Data were collected using questionnaires to examine social media use, perceptions and attitudes towards social media and professional behaviours online. Students who responded (n=155) all used social media at least once per week; most used more than one platform. Students were aware of the relationship between social media use and professional practice. Posting drunken photographs and interacting with staff and patients online were widely considered as unprofessional. Security settings affected behaviour and most had seen inappropriate behaviours online. Students use social media extensively. Students are aware of the risks but there is a greater sense of safety in closed groups and many students are exposed to potentially inappropriate content online. This suggests that there are opportunities to reduce these risks through training to help students manage these risks

    MICALs in control of the cytoskeleton, exocytosis, and cell death

    Get PDF
    MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases
    corecore