388 research outputs found

    On the Optimal Choice of Spin-Squeezed States for Detecting and Characterizing a Quantum Process

    Full text link
    Quantum metrology uses quantum states with no classical counterpart to measure a physical quantity with extraordinary sensitivity or precision. Most metrology schemes measure a single parameter of a dynamical process by probing it with a specially designed quantum state. The success of such a scheme usually relies on the process belonging to a particular one-parameter family. If this assumption is violated, or if the goal is to measure more than one parameter, a different quantum state may perform better. In the most extreme case, we know nothing about the process and wish to learn everything. This requires quantum process tomography, which demands an informationally-complete set of probe states. It is very convenient if this set is group-covariant -- i.e., each element is generated by applying an element of the quantum system's natural symmetry group to a single fixed fiducial state. In this paper, we consider metrology with 2-photon ("biphoton") states, and report experimental studies of different states' sensitivity to small, unknown collective SU(2) rotations ("SU(2) jitter"). Maximally entangled N00N states are the most sensitive detectors of such a rotation, yet they are also among the worst at fully characterizing an a-priori unknown process. We identify (and confirm experimentally) the best SU(2)-covariant set for process tomography; these states are all less entangled than the N00N state, and are characterized by the fact that they form a 2-design.Comment: 10 pages, 5 figure

    Experimental Entanglement of Temporal Orders

    Get PDF
    The study of causal relations has recently been applied to the quantum realm, leading to the discovery that not all quantum processes have a definite causal structure. While such processes have previously been experimentally demonstrated, these demonstrations relied on the assumption that quantum theory can be applied to causal structures and laboratory operations. Here, we present the first demonstration of entangled temporal orders beyond the quantum formalism. We do so by proving the incompatibility of our experimental outcomes with a class of generalized probabilistic theories which satisfy the assumptions of locality and definite temporal orders. To this end, we derive physical constraints (in the form of a Bell-like inequality) on experimental outcomes within such a class of theories. We then experimentally invalidate these theories by violating the inequality, thus providing an experimental proof, outside the quantum formalism, that nature is incompatible with the assumption that the temporal order between events is definite locally.Comment: 20 pages, 8 figures. Thoroughly revised manuscript. Updated theory-independent proofs including new experimental dat

    Adaptive quantum state tomography improves accuracy quadratically

    Get PDF
    We introduce a simple protocol for adaptive quantum state tomography, which reduces the worst-case infidelity between the estimate and the true state from O(N−1/2)O(N^{-1/2}) to O(N−1)O(N^{-1}). It uses a single adaptation step and just one extra measurement setting. In a linear optical qubit experiment, we demonstrate a full order of magnitude reduction in infidelity (from 0.10.1% to 0.010.01%) for a modest number of samples (N=3×104N=3\times10^4).Comment: 8 pages, 7 figure

    Scalable Spatial Super-Resolution using Entangled Photons

    Full text link
    N00N states -- maximally path-entangled states of N photons -- exhibit spatial interference patterns sharper than any classical interference pattern. This is known as super-resolution. However, even with perfectly efficient number-resolving detectors, the detection efficiency of all previously demonstrated methods to measure such interference decreases exponentially with the number of photons in the N00N state, often leading to the conclusion that N00N states are unsuitable for spatial measurements. Here, we create spatial super-resolution fringes with two-, three-, and four-photon N00N states, and demonstrate a scalable implementation of the so-called ``optical centroid measurement'' which provides an in-principle perfect detection efficiency. Moreover, we compare the N00N-state interference to the corresponding classical super-resolution interference. Although both provide the same increase in spatial frequency, the visibility of the classical fringes decreases exponentially with the number of detected photons, while the visibility of our experimentally measured N00N-state super-resolution fringes remains approximately constant with N. Our implementation of the optical centroid measurement is a scalable method to measure high photon-number quantum interference, an essential step forward for quantum-enhanced measurements, overcoming what was believed to be a fundamental challenge to quantum metrology

    Higher-order Process Matrix Tomography of a passively-stable Quantum SWITCH

    Full text link
    The field of indefinite causal order (ICO) has seen a recent surge in interest. Much of this research has focused on the quantum SWITCH, wherein multiple parties act in a superposition of different orders in a manner transcending the quantum circuit model. This results in a new resource for quantum protocols, and is exciting for its relation to issues in foundational physics. The quantum SWITCH is also an example of a higher-order quantum operation, in that it not only transforms quantum states, but also other quantum operations. To date, no higher-order quantum operation has been completely experimentally characterized. Indeed, past work on the quantum SWITCH has confirmed its ICO by measuring causal witnesses or demonstrating resource advantages, but the complete process matrix has only been described theoretically. Here, we perform higher-order quantum process tomography. However, doing so requires exponentially many measurements with a scaling worse than standard process tomography. We overcome this challenge by creating a new passively-stable fiber-based quantum SWITCH using active optical elements to deterministically generate and manipulate time-bin encoded qubits. Moreover, our new architecture for the quantum SWITCH can be readily scaled to multiple parties. By reconstructing the process matrix, we estimate its fidelity and tailor different causal witnesses directly for our experiment. To achieve this, we measure a set of tomographically complete settings, that also spans the input operation space. Our tomography protocol allows for the characterization and debugging of higher-order quantum operations with and without an ICO, while our experimental time-bin techniques could enable the creation of a new realm of higher-order quantum operations with an ICO.Comment: 20 pages (12 pages, 4 pages appendix + reference list and introduction), 8 figures; v2 with updated funding informatio

    Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements

    Full text link
    While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system, often referred to as "Heisenberg's Uncertainty Principle," Heisenberg originally formulated his ideas in terms of a relationship between the precision of a measurement and the disturbance it must create. Although this latter relationship is not rigorously proven, it is commonly believed (and taught) as an aspect of the broader uncertainty principle. Here, we experimentally observe a violation of Heisenberg's "measurement-disturbance relationship", using weak measurements to characterize a quantum system before and after it interacts with a measurement apparatus. Our experiment implements a 2010 proposal of Lund and Wiseman to confirm a revised measurement-disturbance relationship derived by Ozawa in 2003. Its results have broad implications for the foundations of quantum mechanics and for practical issues in quantum mechanics.Comment: 5 pages, 4 figure
    • …
    corecore