21 research outputs found

    Chromosome passenger complexes control anaphase duration and spindle elongation via a kinesin-5 brake

    Get PDF
    Chromosome passenger complexes and bipolar kinesins act together to coordinate spindle elongation, spindle breakdown, and mitotic exit

    A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection

    Get PDF
    Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-kappaB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems

    A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis

    Get PDF
    Patients with newly diagnosed multiple myeloma (NDMM) with high-risk disease are in need of new treatment strategies to improve the outcomes. Multiple clinical, cytogenetic, or gene expression features have been used to identify high-risk patients, each of which has significant weaknesses. Inclusion of molecular features into risk stratification could resolve the current challenges. In a genome-wide analysis of the largest set of molecular and clinical data established to date from NDMM, as part of the Myeloma Genome Project, we have defined DNA drivers of aggressive clinical behavior. Whole-genome and exome data from 1273 NDMM patients identified genetic factors that contribute significantly to progression free survival (PFS) and overall survival (OS) (cumulative R2 = 18.4% and 25.2%, respectively). Integrating DNA drivers and clinical data into a Cox model using 784 patients with ISS, age, PFS, OS, and genomic data, the model has a cumlative R2 of 34.3% for PFS and 46.5% for OS. A high-risk subgroup was defined by recursive partitioning using either a) bi-allelic TP53 inactivation or b) amplification (≥4 copies) of CKS1B (1q21) on the background of International Staging System III, comprising 6.1% of the population (median PFS = 15.4 months; OS = 20.7 months) that was validated in an independent dataset. Double-Hit patients have a dire prognosis despite modern therapies and should be considered for novel therapeutic approaches

    Considerations for Optimization of High-Throughput Sequencing Bioinformatics Pipelines for Virus Detection

    No full text
    High-throughput sequencing (HTS) has demonstrated capabilities for broad virus detection based upon discovery of known and novel viruses in a variety of samples, including clinical, environmental, and biological. An important goal for HTS applications in biologics is to establish parameter settings that can afford adequate sensitivity at an acceptable computational cost (computation time, computer memory, storage, expense or/and efficiency), at critical steps in the bioinformatics pipeline, including initial data quality assessment, trimming/cleaning, and assembly (to reduce data volume and increase likelihood of appropriate sequence identification). Additionally, the quality and reliability of the results depend on the availability of a complete and curated viral database for obtaining accurate results; selection of sequence alignment programs and their configuration, that retains specificity for broad virus detection with reduced false-positive signals; removal of host sequences without loss of endogenous viral sequences of interest; and use of a meaningful reporting format, which can retain critical information of the analysis for presentation of readily interpretable data and actionable results. Furthermore, after alignment, both automated and manual evaluation may be needed to verify the results and help assign a potential risk level to residual, unmapped reads. We hope that the collective considerations discussed in this paper aid toward optimization of data analysis pipelines for virus detection by HTS

    A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection

    Get PDF
    Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-κB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly-conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems.received: 2014-03-26 accepted: 2014-06-25 published: 2014-06-25status: publishe

    Host mRNA transcripts upregulated during VACV infection.

    No full text
    <p>(A) Schematic of RNASeq Experiment. (B) Dots represent the change in expression of genes from 0 to 6 hpi (x-axis) and the average number of sequencing reads that align to each gene in both timepoints (y-axis). Genes with a fold change greater than 2 and more than 20 counts at 6 hpi are considered upregulated (black). HSF1-regulated genes upregulated during VACV infection are labeled in red (a subset is labeled with gene names). (C) Same analysis as in (B) using the WTA-A dataset at 4 hpi from Yang et al. <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003904#ppat.1003904-Yang2" target="_blank">[4]</a>.</p

    HSF1 null MEF cells support significantly less VACV infection.

    No full text
    <p>(A) HSF1 null MEF cells infected with VACV-TrpV show significantly less early (Venus), intermediate (mCherry) and late (TagBFP) gene expression compared to wild type MEFs. Three independent experiments were completed in triplicate; this is a representative plot showing normalized relative fluorescent units (RFU) with standard error. (B) Brightfield images show HSF1 null MEFs exhibit less cytopathic effects than wild type MEFs when infected with VACV at an MOI of 0.1 at 18 hpi. Mock infected HSF1 null and wild type MEFs are included for comparison.</p
    corecore