267 research outputs found
Philosophy and Hip-Hop: Ruminations on Postmodern Cultural Form
Book review of Philosophy and Hip-Hop: Ruminations on Postmodern Cultural Form. By Julius Bailey (2014)
Tensile properties and creep strength of three aluminum alloys exposed up to 25000 hours at 200 deg to 400 deg F /370 deg to 480 deg K/
Tensile properties and creep strength of aluminum alloy
Machining technique prevents undercutting in tensile specimens
Machining technique prevents undercutting at the test section in tensile specimens when machining the four corners of the reduced section. Made with a gradual taper in the test section, the width of the center of the tensile specimen is less than the width at the four corners of the reduced section
Mechanical property characterization of Borsic/aluminum laminates at room and elevated temperatures
Six Borsic/aluminum laminate orientations exposed to a braze temperature cycle were tested in tension, compression, and shear to determine tangent modulus, maximum stress and strain, and Poisson's ratio of the laminates at room and elevated temperatures. Mechanical properties in tension were determined from flat tensile and sandwich beam tests. Room temperature flat tensile tests were performed on laminates in the as-received condition to compare with specimens exposed to a braze temperature cycle. Sandwich beam tests were also used to determine mechanical properties in compression. Shear properties were determined from biaxially loaded, picture frame shear specimens. Results are presented by using functional relations between stress and strain and tangent modulus and strain, and in tables by indicating maximum stress and strain and Poisson's ratio
Elevated temperature behavior of superplastically formed/weld-brazed titanium compression panels having advanced shaped stiffeners
The 316 C (600 F) buckling behavior of superplastically formed/weld-brazed titanium compression panels having advanced shaped stiffeners was investigated. Fabrication of the advanced shaped stiffeners was made possible by the increased formability afforded by the superplasticity characteristics of the titanium alloy Ti-6Al-4V. Stiffeners having the configurations of a conventional hat, a beaded web, a modified beaded web, a ribbed web, and a stepped web were investigated. The data from the panel tests include load-shortening curves, local buckling strengths, and failure loads. The superplastic formed/weld-brazed panels with the ribbed web and stepped web stiffeners developed 25 and 27 percent higher buckling strengths at 316 C (600 F) than panels with conventionally shaped stiffeners. The buckling load reductions for panels tested at 316 C (600 F), compared with panels tested at room temperature, were in agreement with predictions based on titanium material property data. The advantage that higher buckling loads can be readily achieved by superplastically forming of advanced stiffener shapes was demonstrated. Application of these advanced stiffener shapes offers the potential to achieve substantial weight savings in aerospace vehicles
Evaluation of Superplastic Forming and Weld-brazing for Fabrication of Titanium Compression Panels
The two titanium processing procedures, superplastic forming and weld brazing, are successfully combined to fabricate titanium skin stiffened structural panels. Stiffeners with complex shapes are superplastically formed using simple tooling. These stiffeners are formed to the desired configuration and required no additional sizing or shaping following removal from the mold. The weld brazing process by which the stiffeners are attached to the skins utilize spot welds to maintain alignment and no additional tooling is required for brazing. The superplastic formed/weld brazed panels having complex shaped stiffeners develop up to 60 percent higher buckling strengths than panels with conventional shaped stiffeners. The superplastic forming/weld brazing process is successfully scaled up to fabricate full size panels having multiple stiffeners. The superplastic forming/weld brazing process is also successfully refined to show its potential for fabricating multiple stiffener compression panels employing unique stiffener configurations for improved structural efficiency
Metal matrix composite structural panel construction
Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells
Weld-brazing - a new joining process
A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material
Hot salt stress corrosion cracking and its effect on tensile properties of Ti-8Al-1Mo-1V titanium-alloy sheet
Hot salt stress corrosion cracking effects on tensile properties of titanium alloy sheet
Effects of fabrication and joining processes on compressive strength of boron/aluminum and borsic/aluminum structural panels
Processes for forming and joining boron/aluminum and borsic/aluminum to themselves and to titanium alloys were studied. Composite skin and titanium skin panels were joined to composite stringers by high strength bolts, by spotwelding, by diffusion bonding, by adhesive bonding, or by brazing. The effects of the fabrication and joining processes on panel compressive strengths were discussed. Predicted buckling loads were compared with experimental data
- …