1,284 research outputs found

    A Bayesian analysis of small n sequential multiple assignment randomized trials (snSMARTs)

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146269/1/sim7900.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146269/2/sim7900_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146269/3/A_Bayesian_Analysis_of_snSMART_Revision_Supplimentary.pd

    Synthesizing Skyrmion Molecules in Fe-Gd Thin Films

    Get PDF
    We show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit room-temperature skyrmion molecules, or a pair of like-polarity, opposite-helicity skyrmions. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.Comment: 15 pages, 6 figures. Accepted for publication in Applied Physics Letter

    Micro-cutting of single-crystal metal: Finite-element analysis of deformation and material removal

    Get PDF
    This paper presents analysis of mechanics in a micro-cutting process of a single-crystal metal – mechanisms of deformation and material removal related to an anisotropic crystallographic structure of a work-piece. A crystal-plasticity theory was implemented in a finite-element (FE) modelling scheme to consider inherently anisotropic deformation of a single-crystal metal at micro-scale. A new shear-strain-based criterion and several conventional strain-based criteria were employed to simulate the material removal process, and their effect on the anisotropy of cutting forces was studied. Subsequently, the micro-cutting process of single-crystal copper was predicted using FE modelling by combining the crystal-plasticity theory and the proposed criterion of material removal. The validity of the present FE modelling methodology was corroborated through a comprehensive comparison between FE simulations and experimental data in terms of cutting forces, chip morphology, deformation field, pile-up patterns and misorientation angle in the work-piece

    Exciton Optical Absorption in Self-Similar Aperiodic Lattices

    Get PDF
    Exciton optical absorption in self-similar aperiodic one-dimensional systems is considered, focusing our attention on Thue-Morse and Fibonacci lattices as canonical examples. The absorption line shape is evaluated by solving the microscopic equations of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values, according to the Thue-Morse or Fibonacci sequences. Results are compared to those obtained in random lattices with the same stechiometry and size. We find that aperiodic order causes the occurrence of well-defined characteristic features in the absorption spectra which clearly differ from the case of random systems, indicating a most peculiar exciton dynamics. We successfully explain the obtained spectra in terms of the two-center problem. This allows us to establish the origin of all the absorption lines by considering the self-similar aperiodic lattices as composed of two-center blocks, within the same spirit of the renormalization group ideas.Comment: 16 pages in REVTeX 3.0. 2 figures on request to F. D-A ([email protected]

    Multicentre study of maternal and neonatal outcomes in individuals with Prader-Willi syndrome.

    Get PDF
    INTRODUCTION:Prader-Willi syndrome (PWS) is a complex genetic disorder associated with three different genetic subtypes: deletion of the paternal copy of 15q11-q13, maternal UPD for chromosome 15 and imprinting defect. Patients are typically diagnosed because of neonatal hypotonia, dysmorphism and feeding difficulties; however, data on the prenatal features of PWS are limited. OBJECTIVE:The aim of the study was to identify and compare frequencies of prenatal and neonatal clinical features of PWS among the three genetic subtypes. METHODS:Data from 355 patients with PWS from the Rare Diseases Clinical Research Network PWS registry were used to analyse multiple maternal and neonatal factors collected during an 8-year multisite study. RESULTS:Among our cohort of 355 patients with PWS (61% deletion, 36% UPD and 3% imprinting defect) 54% were born by caesarean section, 26% were born prematurely and 34% with a low birth weight (frequencies 32%, 9.6% and 8.1%, respectively, in the general population). Fetal movements were reported as decreased in 72%. All babies were hypotonic, and 99% had feeding difficulties. Low Apgar scores (<7) were noted in 17.7% and 5.6% of patients, respectively, compared with 1% and 1.4%, respectively, in the general population. Maternal age and pre-pregnancy weight were significantly higher in the UPD group (p=0.01 and <0.001, respectively). CONCLUSION:We found a higher rate of perinatal complications in PWS syndrome compared with the general population. No significant differences in the genetic subtypes were noted except for a higher maternal age and pre-pregnancy weight in the UPD subgroup
    • …
    corecore