37 research outputs found

    Success of Endoscopic Pharyngoesophageal Dilation after Head and Neck Cancer Treatment

    Get PDF
    To assess clinical success and safety of endoscopic pharyngoesophageal dilation after chemoradiation or radiation for head and neck cancer and to identify variables associated with dilation failure

    Everolimus in Anaplastic Thyroid Cancer: A Case Series

    Get PDF
    Background: Anaplastic thyroid cancer (ATC) is a very aggressive disease and accounts for over 50% of thyroid-cancer related deaths. mTOR inhibition has shown anti-tumor activity in ATC. We report our experience treating patients with ATC with everolimus off-protocol.Methods: Patients with confirmed ATC and treated with everolimus at DFCI were identified and reviewed retrospectively. NexGen sequencing was performed, and radiologic responses were correlated with mutational profile.Results: Five patients were treated from 2013 to 2016. Three patients had a response, which included one patient who achieved a partial response for 27.9 months, and two patients who had stable disease for 3.7 and 5.9 months, respectively. Genomic analysis was available in two patients and revealed that the partial responder had mutations involving the PI3K/mTOR pathway.Conclusion: Everolimus has anti-tumor activity in ATC, and responses may correlate with mutations involving the PI3K/mTOR pathway. Further studies are warranted

    Head and Neck Cancer Clinical Research on ClinicalTrials.gov: An Opportunity for Radiation Oncologists

    No full text
    Purpose: Many improvements in head and neck cancer (HNC) outcomes are related to optimization of radiation therapy (RT) dose, fractionation, normal-tissue sparing, and technology. However, prior work has shown that the literature of randomized controlled trials is dominated by industry-sponsored trials that have lower rates of incorporating RT. We characterized HNC clinical trials, hypothesizing that RT-specific research questions may be relatively underrepresented among HNC randomized controlled trials. Methods and Materials: A web query of all open interventional trials on www.ClinicalTrials.gov was performed using search terms “head and neck cancer” and specific HNC subsites. Trial details were captured including the modality used, principal investigator (PI) specialty, funding, and whether the study tested a RT-modality specific hypothesis. Chi-square testing and logistic regression were used to compare groups. Results: There were 841 open HNC trials, including definitive (47.6%) and recurrent/metastatic (41.9%) populations. Most trials (71.7%) were phase I or nonrandomized phase II studies, rather than phase III or randomized phase II (28.3%). Among single-arm studies, most (79.6%) incorporated systemic therapy (ST), and fewer (25.2%) incorporated RT. Even fewer phase III and randomized phase II trials tested an RT-specific hypothesis (11.1%), compared with ST-related hypotheses (77.1%; P < .001); trials were more likely to test an RT-hypothesis if the study PI was a radiation oncologist (20.9% vs 6.0%; P < .001). Among RT trials, most early-phase studies tested novel modalities (eg, stereotactic body radiation therapy, proton therapy), whereas most later-phase studies tested dose and fractionation. RT-focused trials had low rates of federal (10.4%) or industry (2.6%) funding. Conclusions: RT-specific research hypotheses are a minority of phase II-III HNC trials, which mostly focus on incorporating ST in the definitive or recurrent/metastatic setting and have higher rates of industry funding. Radiation oncologist PI leadership and increased nonindustry funding access may ensure that RT-specific hypotheses are incorporated into trial design
    corecore