2 research outputs found
Recommended from our members
Comprehensive Phenotyping in Multiple Sclerosis: Discovery Based Proteomics and the Current Understanding of Putative Biomarkers
Currently, there is no single test for multiple sclerosis (MS). Diagnosis is confirmed through clinical evaluation, abnormalities revealed by magnetic resonance imaging (MRI), and analysis of cerebrospinal fluid (CSF) chemistry. The early and accurate diagnosis of the disease, monitoring of progression, and gauging of therapeutic intervention are important but elusive elements of patient care. Moreover, a deeper understanding of the disease pathology is needed, including discovery of accurate biomarkers for MS. Herein we review putative biomarkers of MS relating to neurodegeneration and contributions to neuropathology, with particular focus on autoimmunity. In addition, novel assessments of biomarkers not driven by hypotheses are discussed, featuring our application of advanced proteomics and metabolomics for comprehensive phenotyping of CSF and blood. This strategy allows comparison of component expression levels in CSF and serum between MS and control groups. Examination of these preliminary data suggests that several CSF proteins in MS are differentially expressed, and thus, represent putative biomarkers deserving of further evaluation
Comprehensive Phenotyping in Multiple Sclerosis: Discovery Based Proteomics and the Current Understanding of Putative Biomarkers
Currently, there is no single test for multiple sclerosis (MS). Diagnosis is confirmed through clinical evaluation, abnormalities revealed by magnetic resonance imaging (MRI), and analysis of cerebrospinal fluid (CSF) chemistry. The early and accurate diagnosis of the disease, monitoring of progression, and gauging of therapeutic intervention are important but elusive elements of patient care. Moreover, a deeper understanding of the disease pathology is needed, including discovery of accurate biomarkers for MS. Herein we review putative biomarkers of MS relating to neurodegeneration and contributions to neuropathology, with particular focus on autoimmunity. In addition, novel assessments of biomarkers not driven by hypotheses are discussed, featuring our application of advanced proteomics and metabolomics for comprehensive phenotyping of CSF and blood. This strategy allows comparison of component expression levels in CSF and serum between MS and control groups. Examination of these preliminary data suggests that several CSF proteins in MS are differentially expressed, and thus, represent putative biomarkers deserving of further evaluation