6 research outputs found
Delay Extraction based Macromodeling with Parallel Processing for Efficient Simulation of High Speed Distributed Networks
This thesis attempts to address the computational demands of accurate modeling of high speed distributed networks such as interconnect networks and power distribution networks. In order to do so, two different approaches towards modeling of high speed distributed networks are considered. One approach deals with cases where the physical characteristics of the network are not known and the network is characterized by its frequency domain tabulated data. Such examples include long interconnect networks described by their Y parameter data. For this class of problems, a novel delay extraction based IFFT algorithm has been developed for accurate transient response simulation.
The other modeling approach is based on a detailed knowledge of the physical and electrical characteristics of the network and assuming a quasi transverse mode of propagation of the electromagnetic wave through the network. Such problems may include two dimensional (2D) and three dimensional (3D) power distribution networks with known geometry and materials. For this class of problem, a delay extraction based macromodeling approaches is proposed which has been found to be able to capture the distributed effects of the network resulting in more compact and accurate simulation compared to the state-of-the-art quasi-static lumped models. Furthermore, waveform relaxation based algorithms for parallel simulations of large interconnect networks and 2D power distribution networks is also presented. A key contribution of this body of work is the identification of naturally parallelizable and convergent iterative techniques that can divide the computational costs of solving such large macromodels over a multi-core hardware
Comparative Analysis of Prior Knowledge-Based Machine Learning Metamodels for Modeling Hybrid Copper–Graphene On-Chip Interconnects
In this article, machine learning (ML) metamodels have been developed in order to predict the per-unit-length parameters of hybrid copper–graphene on-chip interconnects based on their structural geometry and layout. ML metamodels within the context of this article include artificial neural networks, support vector machines (SVMs), and least-square SVMs. The salient feature of all these ML metamodels is that they exploit the prior knowledge of the p.u.l. parameters of the interconnects obtained from cheap empirical models to reduce the number of expensive full-wave electromagnetic (EM) simulations required to extract the training data. Thus, the proposed ML metamodels are referred to as prior knowledge-based machine learning (PKBML) metamodels. The PKBML metamodels offer the same accuracy as conventional ML metamodels trained exclusively by full-wave EM solver data, but at the expense of far smaller training time costs. In this article, detailed comparative analysis of the proposed PKBML metamodels have been performed using multiple numerical examples