20 research outputs found

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Approximate shortest descent path on a terrain

    No full text
    A path from a point s to a point t on the surface of a polyhedral terrain is said to be descent if for every pair of points p = (x(p), y(p), z(p)) and q = (x(q), y(q), z(q)) on the path, if dist(s,p) z(q), where dist(s,p) denotes the distance of p from s along the aforesaid path. Although an efficient algorithm to decide if there is a descending path between two points is known for more than a decade, no efficient algorithm is yet known to find a shortest descending path from s to t in a polyhedral terrain. In this paper we propose an (1 + ε-approximation algorithm running in polynomial time for the same

    On the number of shortest descending paths on the surface of a convex terrain

    No full text
    The shortest paths on the surface of a convex polyhedron can be grouped into equivalence classes according to the sequences of edges, consisting of n-triangular faces, that they cross. Mount (1990) [7] proved that the total number of such equivalence classes is Θ(n4). In this paper, we consider descending paths on the surface of a 3D terrain. A path in a terrain is called a descending path if the z-coordinate of a point p never increases, if we move p along the path from the source to the target. More precisely, a descending path from a point s to another point t is a path Π such that for every pair of points p=(x(p),y(p),z(p)) and q=(x(q),y(q),z(q)) on Π, if dist(s,p)<dist(s,q) then z(p)≥z(q). Here dist(s,p) denotes the distance of p from s along Π. We show that the number of equivalence classes of the shortest descending paths on the surface of a convex terrain is Θ(n4). We also discuss the difficulty of finding the number of equivalence classes on a convex polyhedron

    Two-center of the convex hull of a point set: Dynamic model, and restricted streaming model

    No full text
    In this paper, we consider the dynamic version of covering the convex hull of a point set P in R2 by two congruent disks of minimum size. Here, the points can be added or deleted in the set P, and the objective is to maintain a data structure that, at any instant of time, can efficiently report two disks of minimum size whose union completely covers the boundary of the convex hull of the point set P. We show that maintaining a linear size data structure, we can report a radius r satisfying r 2ropt at any query time, where ropt is the optimum solution at that instant of time. For each insertion or deletion of a point in P, the update time of our data structure is O(log n). Our algorithm can be tailored to work in the restricted streaming model where only insertions are allowed, using constant work-space. The problem studied in this paper has novelty in two ways: (i) it computes the covering of the convex hull of a point set P, which has lot of surveillance related applications, but not studied in the literature, and (ii) it also considers the dynamic version of the problem. In the dynamic setup, the extent measure problems are studied very little, and in particular, the k-center problem is not at all studied for any k2

    BAl4Mg−/0/+: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom

    No full text
    We have explored the chemical space of BAl4Mg−/0/+ for the first time and theoretically characterized several isomers with interesting bonding patterns. We have used chemical intuition and a cluster building method based on the tabu-search algorithm implemented in the Python program for aggregation and reaction (PyAR) to obtain the maximum number of possible stationary points. The global minimum geometries for the anion (1a) and cation (1c) contain a planar tetracoordinate boron (ptB) atom, whereas the global minimum geometry for the neutral (1n) exhibits a planar pentacoordinate boron (ppB) atom. The low-lying isomers of the anion (2a) and cation (3c) also contain a ppB atom. The low-lying isomer of the neutral (2n) exhibits a ptB atom. Ab initio molecular dynamics simulations carried out at 298 K for 2000 fs suggest that all isomers are kinetically stable, except the cation 3c. Simulations carried out at low temperatures (100 and 200 K) for 2000 fs predict that even 3c is kinetically stable, which contains a ppB atom. Various bonding analyses (NBO, AdNDP, AIM, etc.) are carried out for these six different geometries of BAl4Mg−/0/+ to understand the bonding patterns. Based on these results, we conclude that ptB/ppB scenarios are prevalent in these systems. Compared to the carbon counter-part, CAl4Mg−, here the anion (BAl4Mg−) obeys the 18 valence electron rule, as B has one electron fewer than C. However, the neutral and cation species break the rule with 17 and 16 valence electrons, respectively. The electron affinity (EA) of BAl4Mg is slightly higher (2.15 eV) than the electron affinity of CAl4Mg (2.05 eV). Based on the EA value, it is believed that these molecules can be identified in the gas phase. All the ptB/ppB isomers exhibit π/σ double aromaticity. Energy decomposition analysis predicts that the interaction between BAl4−/0/+ and Mg is ionic in all these six systems

    Approximation algorithms for shortest descending paths in terrains

    Get PDF
    A path from s to t on a polyhedral terrain is descending if the height of a point p never increases while we move p along the path from s to t. No efficient algorithm is known to find a shortest descending path (SDP) from s to t in a polyhedral terrain. We present two approximation algorithms that solve the SDP problem on general terrains. We also introduce a generalization of the shortest descending path problem, called the shortest gently descending path (SGDP) problem, where a path descends, but not too steeply. The additional constraint to disallow a very steep descent makes the paths more realistic in practice. We present two approximation algorithms to solve the SGDP problem on general terrains. All of our algorithms are simple, robust and easy to implement

    BAl<sub>4</sub>Mg<sup>−/0/+</sup>: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom

    No full text
    We have explored the chemical space of BAl4Mg−/0/+ for the first time and theoretically characterized several isomers with interesting bonding patterns. We have used chemical intuition and a cluster building method based on the tabu-search algorithm implemented in the Python program for aggregation and reaction (PyAR) to obtain the maximum number of possible stationary points. The global minimum geometries for the anion (1a) and cation (1c) contain a planar tetracoordinate boron (ptB) atom, whereas the global minimum geometry for the neutral (1n) exhibits a planar pentacoordinate boron (ppB) atom. The low-lying isomers of the anion (2a) and cation (3c) also contain a ppB atom. The low-lying isomer of the neutral (2n) exhibits a ptB atom. Ab initio molecular dynamics simulations carried out at 298 K for 2000 fs suggest that all isomers are kinetically stable, except the cation 3c. Simulations carried out at low temperatures (100 and 200 K) for 2000 fs predict that even 3c is kinetically stable, which contains a ppB atom. Various bonding analyses (NBO, AdNDP, AIM, etc.) are carried out for these six different geometries of BAl4Mg−/0/+ to understand the bonding patterns. Based on these results, we conclude that ptB/ppB scenarios are prevalent in these systems. Compared to the carbon counter-part, CAl4Mg−, here the anion (BAl4Mg−) obeys the 18 valence electron rule, as B has one electron fewer than C. However, the neutral and cation species break the rule with 17 and 16 valence electrons, respectively. The electron affinity (EA) of BAl4Mg is slightly higher (2.15 eV) than the electron affinity of CAl4Mg (2.05 eV). Based on the EA value, it is believed that these molecules can be identified in the gas phase. All the ptB/ppB isomers exhibit π/σ double aromaticity. Energy decomposition analysis predicts that the interaction between BAl4−/0/+ and Mg is ionic in all these six systems

    Localized geometric query problems

    No full text
    A new class of geometric query problems are studied in this paper. We are required to preprocess a set of geometric objects P in the plane, so that for any arbitrary query point q, the largest circle that contains q but does not contain any member of P, can be reported efficiently. The geometric sets that we consider are point sets and boundaries of simple polygons

    Geometric Path Problems with Violations

    No full text
    In this paper, we study variants of the classical geometric shortest path problem inside a simple polygon, where we allow a part of the path to go outside the polygon. Let P be a simple polygon consisting of n vertices and let s, t be a pair of points in P. Let (Formula presented.) represent the interior of P and let (Formula presented.) represent the exterior of P, i.e. (Formula presented.) and (Formula presented.). For an integer (Formula presented.), we define a k-violation path from s to t to be a path connecting s and t such that its intersection with (Formula presented.) consists of at most k segments. There is no restriction in terms of the number of segments of the path within P. The objective is to compute a path of minimum Euclidean length among all possible (Formula presented.)-violation paths from s to t. In this paper, we study this problem for (Formula presented.) and propose an algorithm that computes the shortest one-violation path in (Formula presented.) time. We show that for rectilinear polygons, the minimum length rectilinear one-violation path can be computed in (Formula presented.) time. We extend the concept of one-violation path to a one-stretch violation path. In this case, the path between s and t is composed of (a) a path in P from s to a vertex u of P, (b) a path in (Formula pres
    corecore