13 research outputs found

    Development of decadal (1985–1995–2005) land use and land cover database for India

    Get PDF
    India has experienced significant Land-Use and Land-Cover Change (LULCC) over the past few decades. In this context, careful observation and mapping of LULCC using satellite data of high to medium spatial resolution is crucial for understanding the long-term usage patterns of natural resources and facilitating sustainable management to plan, monitor and evaluate development. The present study utilizes the satellite images to generate national level LULC maps at decadal intervals for 1985, 1995 and 2005 using onscreen visual interpretation techniques with minimum mapping unit of 2.5 hectares. These maps follow the classification scheme of the International Geosphere Biosphere Programme (IGBP) to ensure compatibility with other global/regional LULC datasets for comparison and integration. Our LULC maps with more than 90% overall accuracy highlight the changes prominent at regional level, i.e., loss of forest cover in central and northeast India, increase of cropland area in Western India, growth of peri-urban area, and relative increase in plantations. We also found spatial correlation between the cropping area and precipitation, which in turn confirms the monsoon dependent agriculture system in the country. On comparison with the existing global LULC products (GlobCover and MODIS), it can be concluded that our dataset has captured the maximum cumulative patch diversity frequency indicating the detailed representation that can be attributed to the on-screen visual interpretation technique. Comparisons with global LULC products (GlobCover and MODIS) show that our dataset captures maximum landscape diversity, which is partly attributable to the on-screen visual interpretation techniques. We advocate the utility of this database for national and regional studies on land dynamics and climate change research. The database would be updated to 2015 as a continuing effort of this study

    Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A^*

    Full text link
    Horizon-scale images of black holes (BHs) and their shadows have opened an unprecedented window onto tests of gravity and fundamental physics in the strong-field regime. We consider a wide range of well-motivated deviations from classical General Relativity (GR) BH solutions, and constrain them using the Event Horizon Telescope (EHT) observations of Sagittarius A^* (Sgr A^*), connecting the size of the bright ring of emission to that of the underlying BH shadow and exploiting high-precision measurements of Sgr A^*'s mass-to-distance ratio. The scenarios we consider, and whose fundamental parameters we constrain, include various regular BHs, string-inspired space-times, violations of the no-hair theorem driven by additional fields, alternative theories of gravity, novel fundamental physics frameworks, and BH mimickers including well-motivated wormhole and naked singularity space-times. We demonstrate that the EHT image of Sgr A^* places particularly stringent constraints on models predicting a shadow size larger than that of a Schwarzschild BH of a given mass, with the resulting limits in some cases surpassing cosmological ones. Our results are among the first tests of fundamental physics from the shadow of Sgr A^* and, while the latter appears to be in excellent agreement with the predictions of GR, we have shown that a number of well motivated alternative scenarios, including BH mimickers, are far from being ruled out at present.Comment: 82 pages, 47 figures, 50+ models tested. v3: fixed a few figures, clarified several points, included various analytical expressions for shadow sizes within the different models, added a few references, included a summary table (Table II). Version accepted for publication in Classical and Quantum Gravit

    Science with the Daksha High Energy Transients Mission

    Full text link
    We present the science case for the proposed Daksha high energy transients mission. Daksha will comprise of two satellites covering the entire sky from 1~keV to >1>1~MeV. The primary objectives of the mission are to discover and characterize electromagnetic counterparts to gravitational wave source; and to study Gamma Ray Bursts (GRBs). Daksha is a versatile all-sky monitor that can address a wide variety of science cases. With its broadband spectral response, high sensitivity, and continuous all-sky coverage, it will discover fainter and rarer sources than any other existing or proposed mission. Daksha can make key strides in GRB research with polarization studies, prompt soft spectroscopy, and fine time-resolved spectral studies. Daksha will provide continuous monitoring of X-ray pulsars. It will detect magnetar outbursts and high energy counterparts to Fast Radio Bursts. Using Earth occultation to measure source fluxes, the two satellites together will obtain daily flux measurements of bright hard X-ray sources including active galactic nuclei, X-ray binaries, and slow transients like Novae. Correlation studies between the two satellites can be used to probe primordial black holes through lensing. Daksha will have a set of detectors continuously pointing towards the Sun, providing excellent hard X-ray monitoring data. Closer to home, the high sensitivity and time resolution of Daksha can be leveraged for the characterization of Terrestrial Gamma-ray Flashes.Comment: 19 pages, 7 figures. Submitted to ApJ. More details about the mission at https://www.dakshasat.in

    C-peptide and metabolic outcomes in trials of disease modifying therapy in new-onset type 1 diabetes: an individual participant meta-analysis

    Get PDF
    Background Metabolic outcomes in type 1 diabetes remain suboptimal. Disease modifying therapy to prevent β-cell loss presents an alternative treatment framework but the effect on metabolic outcomes is unclear. We, therefore, aimed to define the relationship between insulin C-peptide as a marker of β-cell function and metabolic outcomes in new-onset type 1 diabetes. Methods 21 trials of disease-modifying interventions within 100 days of type 1 diabetes diagnosis comprising 1315 adults (ie, those 18 years and older) and 1396 children (ie, those younger than 18 years) were combined. Endpoints assessed were stimulated area under the curve C-peptide, HbA1c, insulin use, hypoglycaemic events, and composite scores (such as insulin dose adjusted A1c, total daily insulin, U/kg per day, and BETA-2 score). Positive studies were defined as those meeting their primary endpoint. Differences in outcomes between active and control groups were assessed using the Wilcoxon rank test. Findings 6 months after treatment, a 24·8% greater C-peptide preservation in positive studies was associated with a 0·55% lower HbA1c (p<0·0001), with differences being detectable as early as 3 months. Cross-sectional analysis, combining positive and negative studies, was consistent with this proportionality: a 55% improvement in C-peptide preservation was associated with 0·64% lower HbA1c (p<0·0001). Higher initial C-peptide levels and greater preservation were associated with greater improvement in HbA1c. For HbA1c, IDAAC, and BETA-2 score, sample size predictions indicated that 2–3 times as many participants per group would be required to show a difference at 6 months as compared with C-peptide. Detecting a reduction in hypoglycaemia was affected by reporting methods. Interpretation Interventions that preserve β-cell function are effective at improving metabolic outcomes in new-onset type 1 diabetes, confirming their potential as adjuncts to insulin. We have shown that improvements in HbA1c are directly proportional to the degree of C-peptide preservation, quantifying this relationship, and supporting the use of C-peptides as a surrogate endpoint in clinical trials

    Flood risk assessment using multi-criteria analysis: a case study from Kopili River Basin, Assam, India

    No full text
    A multi-criteria analysis (MCA) approach to describe the effective utilization of geospatial techniques for disaster risk reduction at village level in Kopili River Basin (KRB) of Assam State, India is presented. The KRB is chronically flood affected due to seasonal monsoon and rise in water levels of Kopili River. Based on the MCA approach using flood hazard layer derived from the spatio-multi-temporal historic satellite data-sets (comprising of sensors from RISAT-1 SAR, Radarsat SAR and IRS AWiFS), socio-economic data (based on five census variables), infrastructure (road network) and land use vulnerabilities (cropped and uncropped areas), flood risk zones are derived. Our study elucidates that 24,837 ha of crop area spread across 95 villages in the KRB falls in high risk zone, about 39,209 ha distributed in 150 villages falls under moderate-high risk zones and remaining area spread over 162 villages is more or less unaffected. The proposed approach can be applied elsewhere in other river basins to estimate the flood risk so as to mitigate the disaster risk posed by the floods

    Species-level classification and mapping of a mangrove forest using random forest—utilisation of AVIRIS-NG and sentinel data

    No full text
    Although studies on species-level classification and mapping using multisource data and machine learning approaches are plenty, the use of data with ideal placement of central wavelength and bandwidth at appropriate spatial resolution, for the classification of mangrove species is underreported. The species composition of a mangrove forest has been estimated utilising the red-edge spectral bands and chlorophyll absorption information from AVIRIS-NG and Sentinel-2 data. In this study, three dominant species, Heritiera fomes, Excoecaria agallocha and Avicennia officinalis, have been classified using the random forest (RF) model for a mangrove forest in Bhitarkanika Wildlife Sanctuary, India. Various combinations of reflectance/backscatter bands and vegetation indices derived from Sentinel-2, AVIRIS-NG, and Sentinel-1 were used for species-level discrimination and mapping. The RF model showed maximum accuracy using Sentinel-2, followed by the AVIRIS-NG, in discriminating three dominant species and two mixed compositions. This study indicates the potential of Sentinel-2 data for discriminating various mangrove species owing to the appropriate placement of central wavelength and bandwidth in Sentinel-2 at ≥10 m spatial resolution. The variable importance plots proved that species-level classification could be attempted using red edge and chlorophyll absorption information. This study has wider applicability in other mangrove forests around the world

    Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India

    No full text
    Forest canopy height estimates, at a regional scale, help understand the forest carbon storage, ecosystem processes, the development of forest management and the restoration policies to mitigate global climate change, etc. The recent availability of the NASA’s Global Ecosystem Dynamics Investigation (GEDI) LiDAR data has opened up new avenues to assess the plant canopy height at a footprint level. Here, we present a novel approach using the random forest (RF) for the wall-to-wall canopy height estimation over India’s forests (i.e., evergreen forest, deciduous forest, mixed forest, plantation, and shrubland) by employing the high-resolution top-of-the-atmosphere (TOA) reflectance and vegetation indices, the synthetic aperture radar (SAR) backscatters, the topography and tree canopy density, as the proxy variables. The variable importance plot indicated that the SAR backscatters, tree canopy density and the topography are the most influential height predictors. 33.15% of India’s forest cover demonstrated the canopy height 20 m). This study advocates the importance and use of GEDI data for estimating the canopy height, preferably in data-deficit mountainous regions, where most of India’s natural forest vegetation exists

    Development of Decadal (1985–1995–2005) Land Use and Land Cover Database for India

    No full text
    India has experienced significant Land-Use and Land-Cover Change (LULCC) over the past few decades. In this context, careful observation and mapping of LULCC using satellite data of high to medium spatial resolution is crucial for understanding the long-term usage patterns of natural resources and facilitating sustainable management to plan, monitor and evaluate development. The present study utilizes the satellite images to generate national level LULC maps at decadal intervals for 1985, 1995 and 2005 using onscreen visual interpretation techniques with minimum mapping unit of 2.5 hectares. These maps follow the classification scheme of the International Geosphere Biosphere Programme (IGBP) to ensure compatibility with other global/regional LULC datasets for comparison and integration. Our LULC maps with more than 90% overall accuracy highlight the changes prominent at regional level, i.e., loss of forest cover in central and northeast India, increase of cropland area in Western India, growth of peri-urban area, and relative increase in plantations. We also found spatial correlation between the cropping area and precipitation, which in turn confirms the monsoon dependent agriculture system in the country. On comparison with the existing global LULC products (GlobCover and MODIS), it can be concluded that our dataset has captured the maximum cumulative patch diversity frequency indicating the detailed representation that can be attributed to the on-screen visual interpretation technique. Comparisons with global LULC products (GlobCover and MODIS) show that our dataset captures maximum landscape diversity, which is partly attributable to the on-screen visual interpretation techniques. We advocate the utility of this database for national and regional studies on land dynamics and climate change research. The database would be updated to 2015 as a continuing effort of this study
    corecore