38 research outputs found

    Bioinorganic Chemistry in Thyroid Gland: Effect of Antithyroid Drugs on Peroxidase-Catalyzed Oxidation and Iodination Reactions

    Get PDF
    Propylthiouracil (PTU) and methimazole (MMI) are the most commonly used antithyroid drugs. The available data suggest that these drugs may block the thyroid hormone synthesis by inhibiting the thyroid peroxidase (TPO) or diverting oxidized iodides away from thyroglobulin. It is also known that PTU inhibits the selenocysteine-containing enzyme ID-1 by reacting with the selenenyl iodide intermediate (E-SeI). In view of the current interest in antithyroid drugs, we have recently carried out biomimetic studies to understand the mechanism by which the antithyroid drugs inhibit the thyroid hormone synthesis and found that the replacement of sulfur with selenium in MMI leads to an interesting compound that may reversibly block the thyroid hormone synthesis. Our recent results on the inhibition of lactoperoxidase (LPO)-catalyzed oxidation and iodination reactions by antithyroid drugs are described

    Thyroid hormone synthesis and anti-thyroid drugs: a Bioinorganic Chemistry approach

    Get PDF
    Hydrogen peroxide, generated by thyroid oxidase enzymes, is a crucial substrate for the thyroid peroxidase (TPO)-catalysed biosynthesis of thyroid hormones, thyroxine (T4) and triiodothyronine (T3) in the thyroid gland. It is believed that the H2O2 generation is a limiting step in thyroid hormone synthesis. Therefore, the control of hydrogen peroxide concentration is one of the possible mechanisms for the inhibition of thyroid hormone biosynthesis. The inhibition of thyroid hormone synthesis is required for the treatment of hyperthyroidism and this can be achieved by one or more anti-thyroid drugs. The most widely used anti-thyroid drug methimazole (MMI) inhibits the production of thyroid hormones by irreversibly inactivating the enzyme TPO. Our studies show that the replacement of sulphur in MMI by selenium leads to a selone, which exists predominantly in its zwitterionic form. In contrast to the sulphur drug, the selenium analogue (MSeI) reversibly inhibits the peroxidase-catalysed oxidation and iodination reactions. Theoretical studies on MSeI reveal that the selenium atom in this compound carries a large negative charge. The carbon-selenium bond length in MSeI is found to be close to single-bond length. As the selenium atom exhibits a large nucleophilic character, the selenium analogue of MMI may scavenge the hydrogen peroxide present in the thyroid cells, which may lead to a reversible inhibition of thyroid hormone biosynthesis

    Selenium-containing enzymes in mammals: chemical perspectives

    Get PDF
    The chemical and biochemical route to the synthesis of the 21st amino acid in living systems, selenocysteine, is described. The incorporation of this rare amino acid residue into proteins is described with emphasis on the role of monoselenophosphate as selenium source. The role of selenocysteine moiety in natural mammalian enzymes such as glutathione peroxidase (GPx), iodothyronine deiodinase (ID) and thioredoxin reductase (TrxR) is highlighted and the effect of other amino acid residues located in close proximity to selenocysteine is described. It is evident from various studies that two amino acid residues, tryptophan and glutamine, appear in identical positions in all known members of the GPx family. According to the three-dimensional structure established for bovine GPx, these residues could constitute a catalytic triad in which the selenol group of the selenocysteine is both stabilized and activated by hydrogen bonding with the imino group of the tryptophan (Trp) residue and with the amido group of the glutamine (Gln) residue. The ID enzymes, on the other hand, do not possess any Trp or Gln residues in close proximity to selenium, but contain several histidine residues, which may play important roles in the catalysis. The TrxR enzymes also possess some basic histidines, but the most important amino acid residues are the cysteines which constitute the internal cofactor systems along with the catalytically active selenocysteine. The catalytic activity and substrate specificity of all three selenoenzymes are described. The reactivity of selenocysteine residues in selenoenzymes towards metal-based drugs such as goldthioglucose is also described

    Bioinorganic Chemistry in Thyroid Gland: Effect of Antithyroid Drugs on Peroxidase-Catalyzed Oxidation and Iodination Reactions

    Get PDF
    Propylthiouracil (PTU) and methimazole (MMI) are the most commonly used antithyroid drugs. The available data suggest that these drugs may block the thyroid hormone synthesis by inhibiting the thyroid peroxidase (TPO) or diverting oxidized iodides away from thyroglobulin. It is also known that PTU inhibits the selenocysteine-containing enzyme ID-1 by reacting with the selenenyl iodide intermediate (E-SeI). In view of the current interest in antithyroid drugs, we have recently carried out biomimetic studies to understand the mechanism by which the antithyroid drugs inhibit the thyroid hormone synthesis and found that the replacement of sulfur with selenium in MMI leads to an interesting compound that may reversibly block the thyroid hormone synthesis. Our recent results on the inhibition of lactoperoxidase (LPO)-catalyzed oxidation and iodination reactions by antithyroid drugs are described. Copyright © 2006 G. Roy and G. Mugesh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Selenium analogues of anti-thyroid drugs

    No full text
    The inhibition of lactoperoxidase (LPO)-catalyzed oxidation of ABTS by anti-thyroid drugs and related derivatives is described. The commonly used anti-thyroid agent methimazole (MMI) inhibits the LPO with an IC<SUB>50</SUB> value of 7.0±1.1µM which is much lower than that of the other two anti-thyroid drugs, PTU and MTU. The selenium analogue of methimazole (MSeI) also inhibits LPO with an IC<SUB>50</SUB> value of 16.4±1.5µM, which is about 4-5 times lower than that of PTU and MTU. In contrast to thiones and selones, the S- and Se-protected compounds do not show any noticeable inhibition under identical experimental conditions. While the inhibition of LPO by MMI cannot be reversed by increasing the hydrogen peroxide concentration, the inhibition by MSeI can be completely reversed by increasing the peroxide concentration. Experimental and theoretical studies were performed on a number of selones, which suggest that these compounds exist as selenolates or zwitterions in which the selenium atom carries a large negative charge. The structures of selones were studied in solution by NMR spectroscopy and the <SUP>77</SUP>Se NMR chemical shifts for the selones show large upfield shifts in the signals, confirming the zwitterionic structure of the selones in solution. The thermal isomerization of some S- and Se-substituted methyl and benzyl imidazole derivatives to produce the thermodynamically more stable N-substituted derivatives is described

    Chemistry in thyroid gland: iodothyronine deiodinases and anti-thyroid drugs

    No full text
    The monodeiodination of the prohormone thyroxine (T4) to the biologically active hormone 3,5,3'-triiodothyronine (T3) is the first step in thyroid hormone action and the type I iodothyronine deiodinase (ID-I), an enzyme containing selenocysteine in its active site, is responsible for most of this conversion. ID-I is an integral membrane protein present in highest amounts in liver, kidney, and thyroid. In the deiodinase cycle, the selenol group of the enzyme (E-SeH) first reacts with T4 to form a selenenyl iodide (E-SeI) with a release of the deiodinated iodothyronine. Subsequent reaction of the E-SeI with a thiol of other cofactors releases I<SUP>-</SUP> and regenerates the active site. The thiourea drug, 6-n-propylthiouracil (PTU), reacts with the E-SeI intermediate to inhibit the enzyme active site regeneration. Owing to this property, PTU and related sulfur derivatives are often used in the acute treatment of severely hyperthyroid (Graves disease) patients and therefore commonly known as antithyroid drugs. Although the formation of a mixed selenenyl sulfide (ESe-S-PTU) adduct has been proposed to be a possible way of inhibition, it is still a matter of debate whether PTU reacts with a well-defined Se-I bond of it reacts with an equivalent species or directly with the enzyme active site. In view of this, the first successful model studies on the reactivity of PTU towards synthetic organoselenenyl iodides (RSeI) have been carried out and the results will be discussed as a basis for the deiodinase inhibition. On the basis of experimental data, a mechanism for the inhibition of ID-I by thiouracil drugs and possible amino acid residues responsible for the inhibition will be discussed

    Thyroid hormone synthesis and anti-thyroid drugs: A bioinorganic chemistry approach

    No full text
    Hydrogen peroxide, generated by thyroid oxidase enzymes, is a crucial substrate for the thyroid peroxidase (TPO)-catalysed biosynthesis of thyroid hormones, thyroxine (T4) and triiodothyronine (T3) in the thyroid gland. It is believed that the H2O2H_2O_2 generation is a limiting step in thyroid hormone synthesis. Therefore, the control of hydrogen peroxide concentration is one of the possible mechanisms for the inhibition of thyroid hormone biosynthesis. The inhibition of thyroid hormone synthesis is required for the treatment of hyperthyroidism and this can be achieved by one or more anti-thyroid drugs. The most widely used anti-thyroid drug methimazole (MMI) inhibits the production of thyroid hormones by irreversibly nactivating the enzyme TPO. Our studies show that the replacement of sulphur in MMI by selenium leads to a selone, which exists predominantly in its zwitterionic form. In contrast to the sulphur drug, the selenium analogue (MSeI) reversibly inhibits the peroxidase-catalysed oxidation and iodination reactions. Theoretical studies on MSeI reveal that the selenium atom in this compound carries a large negative charge. The carbon–selenium bond length in MSeI is found to be close to single-bond length. As the selenium atom exhibits a large nucleophilic character, the selenium analogue of MMI may scavenge the hydrogen peroxide present in the thyroid cells, which may lead to a reversible inhibition of thyroid hormone biosynthesis

    Anti-thyroid drugs and thyroid hormone synthesis: effect of methimazole derivatives on peroxidase-catalyzed reactions

    No full text
    Syntheses and characterization of the selenium analogue (MSeI) of anti-thyroid drug methimazole and a series of organoselenium compounds bearing N-methylimidazole pharmacophore are described. In contrast to the sulfur compound that exists predominantly in its thione form, the selenium analogue exists in a selenol form, which spontaneously oxidizes in air to produce the corresponding diselenide. The reduction of the diselenide by GSH or NaBH<SUB>4</SUB> affords the biologically active selenol, which effectively inhibits the lactoperoxidase (LPO) activity in vitro. The monoselenides having N-methylimidazole moiety are found to be much less active than the selenol, suggesting that the presence of a selenol moiety is important for the LPO inhibition. The kinetic and mechanistic studies reveal that MSeI inhibits the LPO activity by reducing the H<SUB>2</SUB>O<SUB>2</SUB>, providing a novel method to reversibly inhibit the enzyme. Although MSeI strongly inhibits LPO, the enzyme's activity can be completely recovered by increasing the H<SUB>2</SUB>O<SUB>2</SUB> concentration. On the other hand, the inhibition by methimazole (MMI), the sulfur analogue, cannot be reversed by increasing the H<SUB>2</SUB>O<SUB>2</SUB> concentration, leading to a complete inactivation of the enzyme. The reversible inhibition of LPO by some of the selenium derivatives is correlated with their glutathione peroxidase (GPx) activity, and the high GPx activity of the selenium compounds as compared with their sulfur analogues suggests that the selenium derivatives may protect the thyroid gland from oxidative damage

    Selenium Analogues of Antithyroid Drugs - Recent Developments

    No full text
    Thyroxine (T4), the main secretory hormone of the thyroid gland, is produced on thyroglobulin by thyroid peroxidase (TPO)/H2O2/(TPO)/H_2O_2/iodide system and deiodinated to its active form (T3) by a selenocysteine-containing enzyme, iodothyronine deiodinase (ID). The activation of thyroid - timulating hormone (TSH) receptor by auto-antibodies leads to 'hyperthyroidism', a life-threatening disease which is treated by antithyroid drugs such as 6-propyl-2-thiouracil PTU) and methimazole (MMI). The present review describes the biological activities of a number of S/Se derivatives bearing the methimazole pharmacophore. It is shown that the isosteric substitutions in the existing drugs lead to compounds that can effectively and reversibly inhibit the heme-containing lactoperoxidase (LPO). In contrast to methimazole, the selenium analogue, MSeI, does not interfere with the enzyme directly, but it inhibits LPO by reducing the H2O2H_2O_2 that is required for the oxidation of the Fe-center in LPO. These studies reveal that the degradation of the intracellular H2_O_2 by the Se analogues of antithyroid drugs may be beneficial to the thyroid gland, as these compounds may act as antioxidants and protect thyroid cells from oxidative damage. Because the drugs with an action essentially on H2O2H_2O_2 can reversibly inhibit the thyroid peroxidase, such drugs could be of great importance in the treatment of hyperthyroidism

    Selenium Analogues of Anti-Thyroid Drugs

    No full text
    The inhibition of lactoperoxidase (LPO)-catalyzed oxidation of ABTS by anti-thyroid drugs and related derivatives is described. The commonly used anti-thyroid agent methimazole (MMI) inhibits the LPO with an IC50IC_{50} value of 7.0 \pm 1.1 \mu M which is much lower than that of the other two anti-thyroid drugs, PTU and MTU. The selenium analogue of methimazole (MSeI) also inhibits LPO with an IC50IC_{50} value of 16.4 \pm 1.5 \mu M, which is about 4-5 times lower than that of PTU and MTU. In contrast to thiones and selones, the S- and Se-protected compounds do not show any noticeable inhibition under identical experimental conditions. While the inhibition of LPO by MMI cannot be reversed by increasing the hydrogen peroxide concentration, the inhibition by MSeI can be completely reversed by increasing the peroxide concentration. Experimental and theoretical studies were performed on a number of selones, which suggest that these compounds exist as selenolates or zwitterions in which the selenium atom carries a large negative charge. The structures of selones were studied in solution by NMR spectroscopy and the 77Se^{77}{Se} NMR chemical shifts for the selones show large upfield shifts in the signals, confirming the zwitterionic structure of the selones in solution. The thermal isomerization of some S- and Se-substituted methyl and benzyl imidazole derivatives to produce the thermodynamically more stable N-substituted derivatives is described
    corecore