14 research outputs found
Optimization of a small molecule inhibitor of secondary nucleation in α-synuclein aggregation
Parkinson’s disease is characterised by the deposition in the brain of amyloid aggregates of α-synuclein. The surfaces of these amyloid aggregates can catalyse the formation of new aggregates, giving rise to a positive feedback mechanism responsible for the rapid proliferation of α-synuclein deposits. We report a procedure to enhance the potency of a small molecule to inhibit the aggregate proliferation process using a combination of in silico and in vitro methods. The optimized small molecule shows potency already at a compound:protein stoichiometry of 1:20. These results illustrate a strategy to accelerate the optimisation of small molecules against α-synuclein aggregation by targeting secondary nucleation
The Coenzyme A Level Modulator Hopantenate (HoPan) Inhibits Phosphopantotenoylcysteine Synthetase Activity
The pantothenate analogue hopantenate (HoPan) is widely used as a modulator of coenzyme A (CoA) levels in cell biology and disease models-especially for pantothenate kinase associated neurodegeneration (PKAN), a genetic disease rooted in impaired CoA metabolism. This use of HoPan was based on reports that it inhibits pantothenate kinase (PanK), the first enzyme of CoA biosynthesis. Using a combination of in vitro enzyme kinetic studies, crystal structure analysis, and experiments in a typical PKAN cell biology model, we demonstrate that instead of inhibiting PanK, HoPan relies on it for metabolic activation. Once phosphorylated, HoPan inhibits the next enzyme in the CoA pathway-phosphopantothenoylcysteine synthetase (PPCS)-through formation of a nonproductive substrate complex. Moreover, the obtained structure of the human PPCS in complex with the inhibitor and activating nucleotide analogue provides new insights into the catalytic mechanism of PPCS enzymes-including the elusive binding mode for cysteine-and reveals the functional implications of mutations in the human PPCS that have been linked to severe dilated cardiomyopathy. Taken together, this study demonstrates that the molecular mechanism of action of HoPan is more complex than previously thought, suggesting that the results of studies in which it is used as a tool compound must be interpreted with care. Moreover, our findings provide a clear framework for evaluating the various factors that contribute to the potency of CoA-directed inhibitors, one that will prove useful in the future rational development of potential therapies of both human genetic and infectious diseases
Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter
Abstract: The aggregation of α-synuclein is a central event in Parkinsons’s disease and related synucleinopathies. Since pharmacologically targeting this process, however, has not yet resulted in approved disease-modifying treatments, there is an unmet need of developing novel methods of drug discovery. In this context, the use of chemical kinetics has recently enabled accurate quantifications of the microscopic steps leading to the proliferation of protein misfolded oligomers. As these species are highly neurotoxic, effective therapeutic strategies may be aimed at reducing their numbers. Here, we exploit this quantitative approach to develop a screening strategy that uses the reactive flux toward α-synuclein oligomers as a selection parameter. Using this approach, we evaluate the efficacy of a library of flavone derivatives, identifying apigenin as a compound that simultaneously delays and reduces the formation of α-synuclein oligomers. These results demonstrate a compound selection strategy based on the inhibition of the formation of α-synuclein oligomers, which may be key in identifying small molecules in drug discovery pipelines for diseases associated with α-synuclein aggregation
Recommended from our members
Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter
Abstract: The aggregation of α-synuclein is a central event in Parkinsons’s disease and related synucleinopathies. Since pharmacologically targeting this process, however, has not yet resulted in approved disease-modifying treatments, there is an unmet need of developing novel methods of drug discovery. In this context, the use of chemical kinetics has recently enabled accurate quantifications of the microscopic steps leading to the proliferation of protein misfolded oligomers. As these species are highly neurotoxic, effective therapeutic strategies may be aimed at reducing their numbers. Here, we exploit this quantitative approach to develop a screening strategy that uses the reactive flux toward α-synuclein oligomers as a selection parameter. Using this approach, we evaluate the efficacy of a library of flavone derivatives, identifying apigenin as a compound that simultaneously delays and reduces the formation of α-synuclein oligomers. These results demonstrate a compound selection strategy based on the inhibition of the formation of α-synuclein oligomers, which may be key in identifying small molecules in drug discovery pipelines for diseases associated with α-synuclein aggregation
Squalamine and Its Derivatives Modulate the Aggregation of Amyloid-β and α-Synuclein and Suppress the Toxicity of Their Oligomers.
The aberrant aggregation of proteins is a key molecular event in the development and progression of a wide range of neurodegenerative disorders. We have shown previously that squalamine and trodusquemine, two natural products in the aminosterol class, can modulate the aggregation of the amyloid-β peptide (Aβ) and of α-synuclein (αS), which are associated with Alzheimer's and Parkinson's diseases. In this work, we expand our previous analyses to two squalamine derivatives, des-squalamine and α-squalamine, obtaining further insights into the mechanism by which aminosterols modulate Aβ and αS aggregation. We then characterize the ability of these small molecules to alter the physicochemical properties of stabilized oligomeric species in vitro and to suppress the toxicity of these aggregates to varying degrees toward human neuroblastoma cells. We found that, despite the fact that these aminosterols exert opposing effects on Aβ and αS aggregation under the conditions that we tested, the modifications that they induced to the toxicity of oligomers were similar. Our results indicate that the suppression of toxicity is mediated by the displacement of toxic oligomeric species from cellular membranes by the aminosterols. This study, thus, provides evidence that aminosterols could be rationally optimized in drug discovery programs to target oligomer toxicity in Alzheimer's and Parkinson's diseases
Recommended from our members
Oligomer dynamics for drug discovery against α-synuclein aggregation in Parkinson's disease
The aberrant aggregation of α-synuclein in Parkinson’s disease and related synucleinopathies is a histological hallmark of these conditions, as well as a cytotoxic process with no known disease-modifying interventions. While many studies have sought to develop small molecules or other biologics that may abrogate fibril formation, it is becoming increasingly clear that the toxicity
associated with α-synuclein aggregation may be linked to soluble oligomeric species that serve as precursors to mature fibrils. These intermediate species are transient, amorphous and highly heterogenous in solution, which has precluded the study of their population dynamics in the context of drug discovery and screening. This thesis will aim to leverage a combination of theoretical and experimental approaches to model the flux towards oligomeric species formation within the fibril amplification process of α-synuclein, and subsequently to employ this flux as a selection parameter in drug discovery. By using this approach, possible strategies will be investigated to reduce oligomeric species formation and show that a particularly effective approach is to design small molecules that bind to the autocatalytic fibril surface of α-synuclein in a structure-based approach. Overall, the thesis aims to demonstrate the viability of the prediction and targeting of oligomeric α-synuclein species during
secondary nucleation as a drug discovery pipeline that yields more robust links to the in vitro profile of an α-synuclein aggregation inhibitor and its resulting effect on α-synuclein-mediated toxicity in Parkinson’s disease pathology
Recommended from our members
Optimization of a small molecule inhibitor of secondary nucleation in α-synuclein aggregation.
Peer reviewed: TrueParkinson's disease is characterised by the deposition in the brain of amyloid aggregates of α-synuclein. The surfaces of these amyloid aggregates can catalyse the formation of new aggregates, giving rise to a positive feedback mechanism responsible for the rapid proliferation of α-synuclein deposits. We report a procedure to enhance the potency of a small molecule to inhibit the aggregate proliferation process using a combination of in silico and in vitro methods. The optimized small molecule shows potency already at a compound:protein stoichiometry of 1:20. These results illustrate a strategy to accelerate the optimisation of small molecules against α-synuclein aggregation by targeting secondary nucleation
Structure-Based Discovery of Small-Molecule Inhibitors of the Autocatalytic Proliferation of α-Synuclein Aggregates.
The presence of amyloid fibrils of α-synuclein is closely associated with Parkinson's disease and related synucleinopathies. It is still very challenging, however, to systematically discover small molecules that prevent the formation of these aberrant aggregates. Here, we describe a structure-based approach to identify small molecules that specifically inhibit the surface-catalyzed secondary nucleation step in the aggregation of α-synuclein by binding to the surface of the amyloid fibrils. The resulting small molecules are screened using a range of kinetic and thermodynamic assays for their ability to bind α-synuclein fibrils and prevent the further generation of α-synuclein oligomers. This study demonstrates that the combination of structure-based and kinetic-based drug discovery methods can lead to the identification of small molecules that selectively inhibit the autocatalytic proliferation of α-synuclein aggregates