4 research outputs found

    Superficial hardened layer of cut surface by turning

    No full text
    One of research methods in metal cutting process is to measure hardness in the contact zone between cutting tool and workpiece. The objective of the performed research was to determine thickness and hardness of the superficial layer of cut surface due to cutting process, both orthogonal and complex cutting. The most important finding was that thickness of the superficial hardened layer is very thin under considered conditions, less than 0.01 … 0.02 mm. This research should be continued

    Iron Oxide–Silica Core–Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies

    No full text
    Recent years have witnessed a tremendous interest in the use of essential oils in biomedical applications due to their intrinsic antimicrobial, antioxidant, and anticancer properties. However, their low aqueous solubility and high volatility compromise their maximum potential, thus requiring the development of efficient supports for their delivery. Hence, this manuscript focuses on developing nanostructured systems based on Fe3O4@SiO2 core–shell nanoparticles and three different types of essential oils, i.e., thyme, rosemary, and basil, to overcome these limitations. Specifically, this work represents a comparative study between co-precipitation and microwave-assisted hydrothermal methods for the synthesis of Fe3O4@SiO2 core–shell nanoparticles. All magnetic samples were characterized by X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetry and differential scanning calorimetry (TG-DSC), and vibrating sample magnetometry (VSM) to study the impact of the synthesis method on the nanoparticle formation and properties, in terms of crystallinity, purity, size, morphology, stability, and magnetization. Moreover, the antimicrobial properties of the synthesized nanocomposites were assessed through in vitro tests on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. In this manner, this study demonstrated the efficiency of the core–shell nanostructured systems as potential applications in antimicrobial therapies

    Zinc Oxide Nanoparticles for Water Purification

    No full text
    In this study, zinc oxide nanoparticles were synthesized through a simple co-precipitation method starting from zinc acetate dihydrate and sodium hydroxide as reactants. The as-obtained ZnO nanoparticles were morphologically and structurally characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photocatalytic activity, and by determining the antimicrobial activity against Gram-negative and Gram-positive bacteria. The XRD pattern of the zinc oxide nanoparticles showed the wurtzite hexagonal structure, and its purity highlighted that the crystallinity correlated with the presence of a single product, zinc oxide. The ZnO nanoparticles have an average crystallite size of 19 ± 11 nm, which is in accordance with the microscopic data. ZnO nanoparticles were tested against methyl orange, used as a model pollutant, and it was found that they exhibit strong photocatalytic activity against this dye. The antibacterial activity of ZnO nanoparticles was tested against Gram-negative and Gram-positive strains (Escherichia coli, Staphylococcus aureus, and Candida albicans). The strongest activity was found against Gram-positive bacteria (S. aureus)

    Preparation and Characterization of Chitosan/TiO2 Composite Membranes as Adsorbent Materials for Water Purification

    No full text
    As it is used in all aspects of human life, water has become more and more polluted. For the past few decades, researchers and scientists have focused on developing innovative composite adsorbent membranes for water purification. The purpose of this research was to synthesize a novel composite adsorbent membrane for the removal of toxic pollutants (namely heavy metals, antibiotics and microorganisms). The as-synthesized chitosan/TiO2 composite membranes were successfully prepared through a simple casting method. The TiO2 nanoparticle concentration from the composite membranes was kept low, at 1% and 5%, in order not to block the functional groups of chitosan, which are responsible for the adsorption of metal ions. Nevertheless, the concentration of TiO2 must be high enough to bestow good photocatalytic and antimicrobial activities. The synthesized composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and swelling capacity. The antibacterial activity was determined against four strains, Escherichia coli, Citrobacter spp., Enterococcus faecalis and Staphylococcus aureus. For the Gram-negative strains, a reduction of more than 5 units log CFU/mL was obtained. The adsorption capacity for heavy metal ions was maximum for the chitosan/TiO2 1% composite membrane, the retention values being 297 mg/g for Pb2+ and 315 mg/g for Cd2+ ions. These values were higher for the chitosan/TiO2 1% than for chitosan/TiO2 5%, indicating that a high content of TiO2 can be one of the reasons for modest results reported previously in the literature. The photocatalytic degradation of a five-antibiotic mixture led to removal efficiencies of over 98% for tetracycline and meropenem, while for vancomycin and erythromycin the efficiencies were 86% and 88%, respectively. These values indicate that the chitosan/TiO2 composite membranes exhibit excellent photocatalytic activity under visible light irradiation. The obtained composite membranes can be used for complex water purification processes (removal of heavy metal ions, antibiotics and microorganisms)
    corecore