179 research outputs found

    Medicaid as a Platform for Broader Health Reform: Supporting High-Need and Low-Income Populations

    Get PDF
    Outlines how policy makers can build on Medicaid to expand health coverage for low-income, high-need people by basing eligibility on income, boosting provider participation, increasing federal funding, and containing costs as a step toward broader reform

    Medicaid: Issues and Challenges for Health Coverage of the Low-Income Population

    Get PDF

    Commentary [on Filling Gaps in Health Coverage]

    Get PDF

    Health Care and the Middle Class: More Costs and Less Coverage

    Get PDF
    Examines the availability, affordability, and stability of health insurance coverage for middle-income families; trends contributing to their growing medical cost burden and percentage among the newly uninsured; and implications

    USCID fifth international conference

    Get PDF
    Presented at the fifth international conference on irrigation and drainage, Irrigation and drainage for food, energy and the environment on November 3-6, 2009 in Salt Lake City, Utah.Includes bibliographical references.The urban water demand in Southwest Texas has grown rapidly in recent years due to large population increase. Regulated deficit irrigation (RDI) is one important measure for saving water while maintaining crop yield/ net benefit. An RDI field experiment was conducted at the Texas AgriLIFE Research and Extension Center at Uvalde in the summer of 2008 to examine the water saving potential. Seven irrigation schemes and four varieties were assigned to the experimental field to test their effects on lint yield. The results showed that: 1) The threshold of the replacement ratio is between 0.7 and 0.8 in fixed ratio irrigation schemes. Dynamic irrigation schemes showed a higher potential to save irrigation water. 2) The fiber quality was affected more by varieties than by irrigation schemes. A 50X (fixed 50% ratio) scheme has the potential risk to produce relatively lower quality cotton fiber by affecting fiber length and fiber yellowness. Considering its negative effect on lint yield as well, the 50X scheme is definitely not recommended. The two dynamic irrigation schemes, 50D and 70D, showed no negative effect on fiber quality. The 70D scheme has some potential to increase the fiber quality in fiber length, uniformity, fiber strength and reflectance; however, this scheme uses more irrigation water that the 50D scheme. Although further research is needed before making definitive conclusions, both dynamic schemes could be applied to maintain lint yield and fiber quality while saving more water, compared to the fixed ratio irrigation schemes

    Gene expression profiling in peanut using high density oligonucleotide microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology.</p> <p>Results</p> <p>We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes.</p> <p>Conclusion</p> <p>The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues.</p

    Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands.

    Get PDF
    Abstract. Arbuscular mycorrhizal (AM) fungi are integral components of grasslands because most plants are associated with interconnected networks of AM hyphae. Mycorrhizae generally facilitate plant uptake of nutrients from the soil. However, mycorrhizal associations are known to vary in their mutualistic function, and there is currently no metric that links AM functioning with fungal colonization of roots. Mycorrhizal structures differ in their physiological and ecological functioning, so changes in AM allocation to intraradical (inside roots) and extraradical (in soil) structures may signal shifts in mycorrhizal function. We hypothesize that the functional equilibrium model applies to AM fungi and that fertilization should reduce allocation to arbuscules, coils, and extraradical hyphae, the fungal structures that are directly involved in nutrient acquisition and transfer to plants. This study compared AM responses to experimental N enrichment at five grasslands distributed across North America. Samples were collected from replicated N-enriched (and some P-enriched) and control plots throughout the growing season for three years. Intraradical AM structures were measured in over 1400 root samples, extraradical hyphal density was measured in over 590 soil samples, and spore biovolume was analyzed in over 400 soil samples. There were significant site Ï« N interactions for spore biovolume, extraradical hyphae, intraradical hyphae, and vesicles. Nitrogen enrichment strongly decreased AM structures at Cedar Creek, the site with the lowest soil N:P, and it increased AM structures at Konza Prairie, the site with the highest soil N:P. As predicted by the functional equilibrium model, in soils with sufficient P, relative allocation to arbuscules, coils, and extraradical hyphae was generally reduced by N enrichment. Allocation to spores and hyphae was most sensitive to fertilization. At the mesic sites, this response was associated with a shift in the relative abundance of Gigasporaceae within AM fungal communities. This study demonstrates that N enrichment impacts mycorrhizal allocation across a wide range of grassland ecosystems. Such changes are important because they suggest an alteration in mycorrhizal functioning that, in turn, may impact plant community composition and ecosystem function
    • …
    corecore