17 research outputs found

    Pediatric Foreign Body Aspiration

    No full text
    OBJECTIVES After completing this article, readers should be able to: 1. Delineate the signs and symptoms of foreign body aspiration. 2. Explain the process of evaluating for suspected foreign body aspiration. 3. Describe the possible radiographic manifestations of foreign body aspiration. 4. Explain the management of foreign body aspiration in children. 5. Delineate the potential late complications of foreign body aspiration

    Two-year outcomes after transcatheter aortic valve replacement with mechanical vs self-expanding valves: The REPRISE III randomized clinical trial

    No full text
    Importance: To our knowledge, REPRISE III is the first large randomized comparison of 2 different transcatheter aortic valve replacement platforms: the mechanically expanded Lotus valve (Boston Scientific) and self-expanding CoreValve (Medtronic). Objective: To evaluate outcomes of Lotus vs CoreValve after 2 years. Design, Setting, and Participants: A total of 912 patients with high/extreme risk and severe, symptomatic aortic stenosis enrolled between September 22, 2014, and December 24, 2015, were randomized 2:1 to receive Lotus (607 [66.6%]) or CoreValve (305 [33.4%] at 55 centers in North America, Europe, and Australia. The first 2-year visit occurred on October 17, 2016, and the last was conducted on April 12, 2018. Clinical and echocardiographic assessments are complete through 2 years and will continue annually through 5 years. Main Outcomes and Measures: All-cause mortality and all-cause mortality or disabling stroke at 2 years. Other clinical factors included overall stroke, disabling stroke, repeated procedures, rehospitalization, valve thrombosis, and pacemaker implantation. Echocardiographic analyses included effective orifice area, mean gradient, and paravalvular leaks (PVLs). Results: Of 912 participants, the mean (SD) age was 82.8 (7.3) years, 465 (51%) were women, and the mean (SD) Society of Thoracic Surgeons predicted risk of mortality was 6.8% (4.0%). At 2 years, all-cause death was 21.3% with Lotus vs 22.5% with CoreValve (hazard ratio [HR], 0.94; 95% CI, 0.69-1.26; P = .67) and all-cause mortality or disabling stroke was 22.8% with Lotus and 27.0% with CoreValve (HR, 0.81; 95% CI, 0.61-1.07; P = .14). Overall stroke was 8.4% vs 11.4% (HR, 0.75; 95% CI, 0.48-1.17; P = .21); disabling stroke was more frequent with CoreValve vs Lotus (4.7% Lotus vs 8.6% CoreValve; HR, 0.53; 95% CI, 0.31-0.93; P = .02). More Lotus patients received a new permanent pacemaker (41.7% vs 26.1%; HR, 1.87; 95% CI, 1.41-2.49; P \u3c .01) or had a valve thrombosis (3.0% vs 0.0%; P \u3c .01) compared with CoreValve. More patients who received CoreValve experienced a repeated procedure (0.6% Lotus vs 2.9% CoreValve; HR, 0.19; 95% CI, 0.05-0.70; P \u3c .01), valve migration (0.0% vs 0.7%; P = .05), or embolization (0.0% vs 2.0%; P \u3c .01) than Lotus. Valve areas remained significantly larger and the mean gradient was lower with CoreValve than Lotus (valve area, mean [SD]: Lotus, 1.53 [0.49] cm2 vs CoreValve, 1.76 [0.51] cm2; P \u3c .01; valve gradient, mean [SD]: Lotus, 13.0 [6.7] mm Hg vs 8.1 [3.7] mm Hg; P \u3c .01). Moderate or greater PVL was more frequent with CoreValve (0.3% Lotus vs 3.8% CoreValve; P \u3c .01) at 2 years. Larger improvements in New York Heart Association (NYHA) functional class were observed with Lotus compared with CoreValve (improved by ≥1 NYHA class: Lotus, 338 of 402 [84.1%] vs CoreValve, 143 of 189 [75.7%]; P = .01; improved by ≥2 NYHA classes: 122 of 402 [37.3%] vs 65 of 305 [21.3%]). Conclusions and Relevance: After 2 years, all-cause mortality rates, mortality or disabling stroke were similar between Lotus and CoreValve. Disabling stroke, functional class, valve migration, and PVL favored the Lotus arm whereas valve hemodynamics, thrombosis, and new pacemaker implantation favored the CoreValve arm. Trial Registration: clinicaltrials.gov Identifier: NCT02202434

    Two-Year Outcomes After Transcatheter Aortic Valve Replacement With Mechanical vs Self-expanding Valves: The REPRISE III Randomized Clinical Trial.

    No full text
    Importance: To our knowledge, REPRISE III is the first large randomized comparison of 2 different transcatheter aortic valve replacement platforms: the mechanically expanded Lotus valve (Boston Scientific) and self-expanding CoreValve (Medtronic). Objective: To evaluate outcomes of Lotus vs CoreValve after 2 years. Design, Setting, and Participants: A total of 912 patients with high/extreme risk and severe, symptomatic aortic stenosis enrolled between September 22, 2014, and December 24, 2015, were randomized 2:1 to receive Lotus (607 [66.6%]) or CoreValve (305 [33.4%] at 55 centers in North America, Europe, and Australia. The first 2-year visit occurred on October 17, 2016, and the last was conducted on April 12, 2018. Clinical and echocardiographic assessments are complete through 2 years and will continue annually through 5 years. Main Outcomes and Measures: All-cause mortality and all-cause mortality or disabling stroke at 2 years. Other clinical factors included overall stroke, disabling stroke, repeated procedures, rehospitalization, valve thrombosis, and pacemaker implantation. Echocardiographic analyses included effective orifice area, mean gradient, and paravalvular leaks (PVLs). Results: Of 912 participants, the mean (SD) age was 82.8 (7.3) years, 465 (51%) were women, and the mean (SD) Society of Thoracic Surgeons predicted risk of mortality was 6.8% (4.0%). At 2 years, all-cause death was 21.3% with Lotus vs 22.5% with CoreValve (hazard ratio [HR], 0.94; 95% CI, 0.69-1.26; P = .67) and all-cause mortality or disabling stroke was 22.8% with Lotus and 27.0% with CoreValve (HR, 0.81; 95% CI, 0.61-1.07; P = .14). Overall stroke was 8.4% vs 11.4% (HR, 0.75; 95% CI, 0.48-1.17; P = .21); disabling stroke was more frequent with CoreValve vs Lotus (4.7% Lotus vs 8.6% CoreValve; HR, 0.53; 95% CI, 0.31-0.93; P = .02). More Lotus patients received a new permanent pacemaker (41.7% vs 26.1%; HR, 1.87; 95% CI, 1.41-2.49; P \u3c .01) or had a valve thrombosis (3.0% vs 0.0%; P \u3c .01) compared with CoreValve. More patients who received CoreValve experienced a repeated procedure (0.6% Lotus vs 2.9% CoreValve; HR, 0.19; 95% CI, 0.05-0.70; P \u3c .01), valve migration (0.0% vs 0.7%; P = .05), or embolization (0.0% vs 2.0%; P \u3c .01) than Lotus. Valve areas remained significantly larger and the mean gradient was lower with CoreValve than Lotus (valve area, mean [SD]: Lotus, 1.53 [0.49] cm2 vs CoreValve, 1.76 [0.51] cm2; P \u3c .01; valve gradient, mean [SD]: Lotus, 13.0 [6.7] mm Hg vs 8.1 [3.7] mm Hg; P \u3c .01). Moderate or greater PVL was more frequent with CoreValve (0.3% Lotus vs 3.8% CoreValve; P \u3c .01) at 2 years. Larger improvements in New York Heart Association (NYHA) functional class were observed with Lotus compared with CoreValve (improved by ≥1 NYHA class: Lotus, 338 of 402 [84.1%] vs CoreValve, 143 of 189 [75.7%]; P = .01; improved by ≥2 NYHA classes: 122 of 402 [37.3%] vs 65 of 305 [21.3%]). Conclusions and Relevance: After 2 years, all-cause mortality rates, mortality or disabling stroke were similar between Lotus and CoreValve. Disabling stroke, functional class, valve migration, and PVL favored the Lotus arm whereas valve hemodynamics, thrombosis, and new pacemaker implantation favored the CoreValve arm. Trial Registration: clinicaltrials.gov Identifier: NCT02202434

    Effect of mechanically expanded vs self-expanding transcatheter aortic valve replacement on mortality and major adverse clinical events in high-risk patients with aortic stenosis: The REPRISE III randomized clinical trial

    No full text
    Importance: Transcatheter aortic valve replacement (TAVR) is established for selected patients with severe aortic stenosis. However, limitations such as suboptimal deployment, conduction disturbances, and paravalvular leak occur. Objective: To evaluate if a mechanically expanded valve (MEV) is noninferior to an approved self-expanding valve (SEV) in high-risk patients with aortic stenosis undergoing TAVR. Design, Setting, and Participants: The REPRISE III trial was conducted in 912 patients with high or extreme risk and severe, symptomatic aortic stenosis at 55 centers in North America, Europe, and Australia between September 22, 2014, and December 24, 2015, with final follow-up on March 8, 2017. Interventions: Participants were randomized in a 2:1 ratio to receive either an MEV (n = 607) or an SEV (n = 305). Main Outcomes and Measures: The primary safety end point was the 30-day composite of all-cause mortality, stroke, life-threatening or major bleeding, stage 2/3 acute kidney injury, and major vascular complications tested for noninferiority (margin, 10.5%). The primary effectiveness end point was the 1-year composite of all-cause mortality, disabling stroke, and moderate or greater paravalvular leak tested for noninferiority (margin, 9.5%). If noninferiority criteria were met, the secondary end point of 1-year moderate or greater paravalvular leak was tested for superiority in the full analysis data set. Results: Among 912 randomized patients (mean age, 82.8 [SD, 7.3] years; 463 [51%] women; predicted risk of mortality, 6.8%), 874 (96%) were evaluable at 1 year. The primary safety composite end point at 30 days occurred in 20.3% of MEV patients and 17.2% of SEV patients (difference, 3.1%; Farrington-Manning 97.5% CI, -∞ to 8.3%; P = .003 for noninferiority). At 1 year, the primary effectiveness composite end point occurred in 15.4% with the MEV and 25.5% with the SEV (difference, -10.1%; Farrington-Manning 97.5% CI, -∞ to -4.4%; P Conclusions and Relevance: Among high-risk patients with aortic stenosis, use of the MEV compared with the SEV did not result in inferior outcomes for the primary safety end point or the primary effectiveness end point. These findings suggest that the MEV may be a useful addition for TAVR in high-risk patients. Trial Registration: ClinicalTrials.gov Identifier: NCT02202434

    Clinical Impact of Standardized TAVR Technique and Care Pathway: Insights From the Optimize PRO Study.

    No full text
    BACKGROUND: Procedural success and clinical outcomes after transcatheter aortic valve replacement (TAVR) have improved, but residual aortic regurgitation (AR) and new permanent pacemaker implantation (PPI) rates remain variable because of a lack of uniform periprocedural management and implantation. OBJECTIVES: The Optimize PRO study evaluates valve performance and procedural outcomes using an optimized TAVR care pathway and the cusp overlap technique (COT) in patients receiving the Evolut PRO/PRO+ (Medtronic) self-expanding valves. METHODS: Optimize PRO, a nonrandomized, prospective, postmarket study conducted in the United States, Canada, Europe, Middle East, and Australia, is enrolling patients with severe symptomatic aortic stenosis and no pre-existing pacemaker. Sites follow a standardized TAVR care pathway, including early discharge and a conduction disturbance management algorithm, and transfemoral deployment using the COT. RESULTS: A total of 400 attempted implants from the United States and Canada comprised the main cohort of this second interim analysis. The mean age was 78.7 ± 6.6 years, and the mean Society of Thoracic Surgeons predictive risk of mortality was 3.0 ± 2.4. The median length of stay was 1 day. There were no instances of moderate or severe AR at discharge. At 30 days, all-cause mortality or stroke was 3.8%, all-cause mortality was 0.8%, disabling stroke was 0.7%, hospital readmission was 10.1%, and cardiovascular rehospitalization was 6.1%. The new PPI rate was 9.8%, 5.8% with 4-step COT compliance. In the multivariable model, right bundle branch block and the depth of the implant increased the risk of PPI, whereas using the 4-step COT lowered 30-day PPI. CONCLUSIONS: The use of the TAVR care pathway and COT resulted in favorable clinical outcomes with no moderate or severe AR and low PPI rates at 30 days while facilitating early discharge and reproducible outcomes across various sites and operators. (Optimize PRO; NCT04091048)
    corecore