5 research outputs found

    Design and Construction of a Cabinet Dryer for Food Waste and Evaluation of its Kinetics and Energy Consumption

    Get PDF
    IntroductionProviding new solutions to control wet waste is one of the most important issues in maintaining public health. Drying will reduce the harmful effects on the environment by reducing moisture and the smell of wastes as well as easy transportation and disposal costs. The purpose of the design and development of the household dryer is to dry food waste in order to reduce its volume and prevent the spread of its pollution in the air, water, and soil. To study the drying behavior of food waste, an experimental cabinet dryer was designed, fabricated, and evaluated for drying food waste.Materials and MethodsThe dryer consisted mainly of the drying chamber, electric heater, fan, air inlet channel, mesh tray, air distribution plates, temperature sensor, and control panel. Different parts of the dryer were made of a stainless galvanized sheet. The dryer was modeled using Catia 2019 software and its various parts were designed. The heating power was calculated as 2.7 kW. A centrifugal fan with an air volume of 310 m3h-1, 2800 rpm, and 110 Pa was used to supply airflow in the dryer. In the drying process, a tray with medium and lateral air passage was fabricated and applied. Food waste was obtained from fruit and vegetable waste, homemade food, and fruit shops. And nonfood items such as glass, paper, plastics, and metals were separated from the waste and crushed with a shredder, and reduced to sizes less than 20 mm. First, the product was placed in the environment for one hour and then pressed with a mechanical press with the same pressure to eliminate part of the water. An anemometer UT363 model made in China was used to measure the air velocity. The temperature was measured and controlled by a temperature thermostat of G-sense model made in Iran. The effect of three temperatures of 50, 60, and 70 °C and three inlet velocities of 1, 1.5, and 2 m s-1 on the kinetics and intensity of drying of food waste and energy consumption of food waste with a thickness of 3 cm was investigated. Moisture ratio and drying intensity diagrams were extracted. Diffusion, activation energy, and energy consumption were determined.Results and DiscussionDrying kinetics diagrams showed that temperature had a significant effect on moisture variation of food waste during drying. Drying period decreased with increasing temperature. The slope of the drying intensity diagrams increased with the increase of the dryer temperature. Drying rate was decreased at the temperature of 70 °c and it had a steeper slope that indicates the more intensity of the drying process in this condition. The drying process of all three samples occurred in the falling rate stage. The air duct on the side and in the middle of the tray caused hot air conducted above the tray and increased energy consumption. Effective moisture diffusivity of food waste during the drying process was in the range of 3.65×10-9-4.56×10-9 (m2 s-1). The effective moisture diffusivity at temperatures of 50 °C and 60 °C was less than 70 °C. Because at the temperature of 70 °C, the membrane resistance of the cell destroyed by high heat and increased the diffusion coefficient in the material.ConclusionIncreasing temperature caused the drying period decreased and the drying occurred in the falling rate stage. Temperature and the interaction of velocity and temperature had a significant effect on the drying process. The highest drying intensity and the lowest drying time were observed at the temperature of 70 °C and a velocity of 2 m s-1. Energy consumption had the maximum value at the temperature of 70 °C and a velocity of 2 m s-1 and a minimum value at the temperature of 50 °C and a velocity of 1 ms-1. The amount of activation energy for the food waste mass at three velocities was equal to 10417.44 J mol-1

    Numerical Simulation of Conventional and Porch Patterns for Air Inlet Channel in Paddy Dryer

    No full text
    Introduction Long drying time and high energy consumption are the big problems in paddy drying using conventional batch type dryer. Besides, non-uniformity occurs in paddy rice dried and low milling quality. Paddy is over dried in lower layers and broken kernel chance increased in milling process. Using of a new pattern for warm air causes to better air passing through the paddy bulk and uniformity of drying. Computational fluid dynamics (CFD) is a good method for modeling of air passing in dryers in order to find better air condition in paddy drying process. The aim of this research was investigation on common and porch patterns applied for air entrance to paddy bulk in a dryer in order to optimize air channel conditions in a conventional paddy dryer. Materials and Methods In this study, optimization of air flow was investigated in a batch type paddy dryer using computational fluid dynamics (CFD). Two patterns as conventional and porch (reverse V type) patterns were applied for air entrance to paddy bulk in the dryer as conventional and porch (reverse V type) patterns. Experimental examination were done using a laboratory batch type dryer with chargeable air flow pattern in 50 °C for drying paddy (Tarom-Hashmei Var.). Numerical simulation of air velocity and pressure drop in porous media of paddy in the dryer was achieved by employing computational fluid dynamics method and Fluent software. Air velocity pattern and temperature changes in bulk of paddy were investigated in different time of solution including 20, 100, 1000, 1800, 3600 and 7200 seconds for both patterns. Results and Discussion Considering air flow and temperature as constant, the results showed the porch type pattern has better performance than the conventional pattern for air passing in the dryer. The velocity vortex was higher in all parts of the channel in the porch scheme. Air velocity uniformed decreased from beginning to end area in the conventional pattern, but in the porch type pattern, air velocity was more in the end of the duct than beginning area. Pressure drop was about 10 percent in the conventional pattern than porch pattern. At the end of the air channel, this variation inversed due to contact of the air with the end wall and pressure drop in this part of the chamber of porch scheme was higher than the conventional one. Improvement of air flow in paddy occurred in low and middle layers in the porch type pattern and there was no difference between two air passing patterns in top layers. Validation of modeling showed that temperature disturbance of the porch model was more uniform than the conventional model and difference between temperatures of model and experiments was about 2 to 3 °C. Conclusions The research concluded that using of the porch type pattern had better performance than the conventional pattern for air passing in the dryer but it is needs to more supplementary research to find the best height and angle in the paddy dryer. Porch type pattern causes to more speed and uniformity of air among of paddy than the conventional pattern. This improvement observed in low and middle layers of the paddy bulk. Validation of temperature data showed that the difference between experimental and modeled data was 4 to 6 percent and this difference was higher in the conventional pattern than the porch pattern. According to the results of this research, Porch pattern can be recommended to use in the conventional batch type dryer
    corecore