1,636 research outputs found

    A survey on mouth modeling and analysis for Sign Language recognition

    Get PDF
    © 2015 IEEE.Around 70 million Deaf worldwide use Sign Languages (SLs) as their native languages. At the same time, they have limited reading/writing skills in the spoken language. This puts them at a severe disadvantage in many contexts, including education, work, usage of computers and the Internet. Automatic Sign Language Recognition (ASLR) can support the Deaf in many ways, e.g. by enabling the development of systems for Human-Computer Interaction in SL and translation between sign and spoken language. Research in ASLR usually revolves around automatic understanding of manual signs. Recently, ASLR research community has started to appreciate the importance of non-manuals, since they are related to the lexical meaning of a sign, the syntax and the prosody. Nonmanuals include body and head pose, movement of the eyebrows and the eyes, as well as blinks and squints. Arguably, the mouth is one of the most involved parts of the face in non-manuals. Mouth actions related to ASLR can be either mouthings, i.e. visual syllables with the mouth while signing, or non-verbal mouth gestures. Both are very important in ASLR. In this paper, we present the first survey on mouth non-manuals in ASLR. We start by showing why mouth motion is important in SL and the relevant techniques that exist within ASLR. Since limited research has been conducted regarding automatic analysis of mouth motion in the context of ALSR, we proceed by surveying relevant techniques from the areas of automatic mouth expression and visual speech recognition which can be applied to the task. Finally, we conclude by presenting the challenges and potentials of automatic analysis of mouth motion in the context of ASLR

    Consideration of some factors affecting low-frequency fuselage noise transmission for propeller aircraft

    Get PDF
    Possible reasons for disagreement between measured and predicted trends of sidewall noise transmission at low frequency are investigated using simplified analysis methods. An analytical model combining incident plane acoustic waves with an infinite flat panel is used to study the effects of sound incidence angle, plate structural properties, frequency, absorption, and the difference between noise reduction and transmission loss. Analysis shows that these factors have significant effects on noise transmission but they do not account for the differences between measured and predicted trends at low frequencies. An analytical model combining an infinite flat plate with a normally incident acoustic wave having exponentially decaying magnitude along one coordinate is used to study the effect of a localized source distribution such as is associated with propeller noise. Results show that the localization brings the predicted low-frequency trend of noise transmission into better agreement with measured propeller results. This effect is independent of low-frequency stiffness effects that have been previously reported to be associated with boundary conditions

    Studies of noise transmission in advanced composite material structures

    Get PDF
    Noise characteristics of advanced composite material fuselages were discussed from the standpoints of applicable research programs and noise transmission theory. Experimental verification of the theory was also included

    Acoustic fatigue: Overview of activities at NASA Langley

    Get PDF
    A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway

    Combining Dense Nonrigid Structure from Motion and 3D Morphable Models for Monocular 4D Face Reconstruction

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this record Monocular 4D face reconstruction is a challenging problem, especially in the case that the input video is captured under unconstrained conditions, i.e. "in the wild". The majority of the state-of-the-art approaches build upon 3D Morphable Modelling (3DMM), which has been proven to be more robust than model-free approaches such as Shape from Shading (SfS) or Structure from Motion (SfM). While offering visually plausible shape reconstruction results that resemble real faces, 3DMMs adhere to the model space learned from exemplar faces during the training phase, often yielding facial reconstructions that are excessively smooth and look too similar even across captured faces with completely different facial characteristics. This is due to the fact that 3DMMs are typically used as hard constraints on the reconstructed 3D shape. To overcome these limitations, in this paper we propose to combine 3DMMs with Dense Nonrigid Structure from Motion (DNSM), which is much less robust but has the potential of reconstructing fine details and capturing the subject-specific facial characteristics of every input. We effectively combine the best of both worlds by introducing a novel dense variational framework, which we solve efficiently by designing a convex optimisation strategy. In contrast to previous methods, we incorporate 3DMM as a soft constraint, penalizing both departure of reconstructed faces from the 3DMM subspace and variation of the identity component of the 3DMM over different frames of the input video. As demonstrated in qualitative and quantitative experiments, our method is robust, accurately estimates the 3D facial shape over time and outperforms other state-of-the-art methods of 4D face reconstruction

    On the performance of key pre-distribution for RPL-based IoT Networks

    Get PDF
    A core ingredient of the the Internet of Things (IoT) is the use of deeply embedded resource constrained devices, often connected to the Internet over Low Power and Lossy Networks. These constraints compounded by the need for unsupervised operation within an untrusted environment create considerable challenges for the secure operation of these systems. In this paper, we propose a novel method to secure an edge IoT network using the concept of key pre-distribution proposed by Eschenauer and Gligor in the context of distributed sensor networks. First, we investigate the performance of the unmodified algorithm in the Internet of Things setting and then analyse the results with a view to determine its performance and thus its suitability in this context. Specifically, we investigate how ring size influences performance in order to determine the required ring size that guarantees full connectivity of the network. We then proceed to propose a novel RPL objective function and associated metrics that ensure that any node that joins the network can establish secure communication with Internet destinations. , N., , H., , Th., , Th., , A., , P

    Noise Transmission Loss of a Rectangular Plate in an Infinite Baffle

    Get PDF
    An improved analytical procedure was developed that allows for the efficient calculation of the noise transmission characteristics of a finite rectangular plate. Both isotropic and symmetrically laminated composite plates are considered. The plate is modeled with classic thin-plate theory and is assumed to be simply supported on all four sides. The incident acoustic pressure is assumed to be a plane wave impinging on the plate at an arbitrary angle. The reradiated pressure is assumed to be negligible compared with the blocked pressure, and the plate vibrations are calculated by a normal-mode approach. A Green's function integral equation is used to link the plate vibrations to be transmitted far-field sound waves, and transmission loss is calculated from the ratio of incident to transmitted acoustic powers. The result is a versatile research and engineering analysis tool that predicts noise transmission loss and enables the determination of the modal behavior of the plate

    Secure routing in IoT networks with SISLOF

    Get PDF
    In this paper, we propose a modification of the RPL routing protocol by introducing the SISLOF Objective Function ensuring that only motes that share a suitable key can join the RPL routing table. This will ensure that all IoT network motes connect in a secure method. SISLOF uses the concept of key pre-distribution proposed by Eschenauer and Gligor in the context of the Internet of Things. First, we discuss related work that provide evidence that the key pre-distribution scheme in the context of the IoT with default RPL metrics fails to achieve the full network connectivity using the same ring size, however full time connectivity can be achieved but with a great cost in term of the large rings sizes. We introduce the SISLOF Objective Function and explain the modification it does to the RPL messages (DIO and DAO). We finally show the performance of the key pre-distribution in the context of the Internet of Things when SISLOF is used as the Objective Function of the RPL routing protocol

    First Report of Krymsk® 5 (cv. VSL 2) Cherry Rootstock In Vitro Propagation: Studying the Effect of Cytokinins, Auxins and Endogenous Sugars

    Get PDF
    Krymsk® 5 (VSL-2) is a semi-dwarf cherry rootstock adaptable to a range of climates. The present study aimed to establish the first efficient in vitro propagation protocol for this rootstock. Therefore, six cytokinines, four adenine type (6-benzyladenine, 2-isopentenyladenine, kinetin and meta-topolin) and two phenylureas (thidiazuron and forchlorfenuron) at three (2.4 μΜ, 4.8 μΜ and 9.6 μΜ) concentrations plus three (0.24 μΜ, 0.48 μΜ, 0.96 μΜ) for thidiazuron only were tested during the multiplication stage. 6-Benzyladenine was the most efficient cytokinin, based on the number of shoots produced (3.5 shoots at 9.6 μΜ) and the number of nodes per explant (10 nodes at 9.6 μΜ) whereas the other aromatic adenine tested, i.e. meta-topolin, presented the highest number of nodes per cm and node per shoot. During the rooting stage the synthetic auxins 1-naphthaleneacetic acid (1-NAA) and indolebutyric acid (IBA) were tested at concentrations of 0, 2.5, 5, 10 and 20 μΜ both separately and in all possible combinations. The percentage of successfully rooted explants reached 95% under the combination of 20 μΜ IBA plus 5 μΜ 1-NAA, whereas the highest number of roots recorded was 8.5 roots for the treatment 20 μΜ ΙΒΑ plus 2.5 μΜ 1-NAA. Furthermore, two different carbon sources were compared, the widely used sucrose and the endogenous sugar ratio of mother plant softwood shoot, sampled during late of May. Endogenous sugar ratio proved to be the preferable carbon source, since it increased the number of shoots produced and almost doubled the number of produced nodes per explant

    Self-tracking in Parkinson’s: The lived efforts of self-management

    Get PDF
    People living with Parkinson's disease engage in self-tracking as part of their health self-management. Whilst health technologies designed for this group have primarily focused on improving the clinical assessments of the disease, less attention has been given to how people with Parkinson's use technology to track and manage their disease in their everyday experience. We report on a qualitative study in which we systematically analysed posts from an online health community (OHC) comprising people with Parkinson's (PwP). Our findings show that PwP track a diversity of information and use a wide range of digital and non-digital tools, informed by temporal and structured practices. Using an existing framework of sensemaking for chronic disease self-management, we also identify new ways in which PwP engage in sensemaking, alongside a set of new challenges that are particular to the character of this chronic disease. We relate our findings to technologies for self-tracking offering design implications
    corecore