49 research outputs found
Reaching a Double-Digit Dielectric Constant with Fullerene Derivatives
The dielectric constant (ϵr) of organic semiconductors is a key material parameter for improving device performance in the field of organic electronics. However, the effect of the dielectric constant on the electronic and optoelectronic properties of materials remains unclear due to the scarcity of known organic semiconductors with an ϵr value higher than 6. Herein, the optical and electronic properties of a homologous series of fullerene derivatives with high ϵr are studied. The low frequency (<106 Hz) ϵr is extracted from the capacitance measured using impedance spectroscopy, and the effect of length (n) and geometrical arrangement of the polar ethylene glycol (EG) side chains is investigated. The ϵr is found to correlate with length for the symmetrical Bingel adducts, whereas for the unsymmetrical branched-EG chain adducts there is no significant difference between the two EG chain lengths. For BTrEG-2, the ϵr reaches 10, which is an unprecedented value in monoadduct fullerene derivatives. These materials open up new possibilities of studying the effect of ϵr in organic electronic devices such as organic photovoltaics, organic thermoelectrics, and organic field-effect transistors
Soil Water Characteristics of European SoilTrEC Critical Zone Observatories
Most of soil functions depend directly or indirectly on soil water retention and transmission, which explains their importance for many environmental processes within Earth's Critical Zones. Soil hydraulic properties are essential in irrigation and drainage studies for closing water balance equation, for predicting leaching of nutrients, for water supply to plants, and for other agronomical and environmental applications. Soil hydraulic properties reflect the structure of the soil porous system comprising pores of different geometry and sizes. This investigation comprises a detailed analytical study of soil hydraulic properties and climate conditions at 18 methodologically selected sites in Damma Glacier, Slavkov Forest, Marchfeld, and Koiliaris Critical Zone Observatories of SoilTrEC project. The local moisture regimes were assessed on a long-term basis by the Newhall model. The experimental data for soil water content at different potentials were used for assessing water storage capacity, pore size distribution, parameters of fitted retention curve equation, curve slope at the inflection point, and water permeability characteristics of each soil horizon. The differences of soil water retention and transmission characteristics-as fundamental properties describing soil structure-were explained by the different stages of soil profile development, parent materials, organic matter content, and land use histories
Stochastic particle packing with specified granulometry and porosity
This work presents a technique for particle size generation and placement in
arbitrary closed domains. Its main application is the simulation of granular
media described by disks. Particle size generation is based on the statistical
analysis of granulometric curves which are used as empirical cumulative
distribution functions to sample from mixtures of uniform distributions. The
desired porosity is attained by selecting a certain number of particles, and
their placement is performed by a stochastic point process. We present an
application analyzing different types of sand and clay, where we model the
grain size with the gamma, lognormal, Weibull and hyperbolic distributions. The
parameters from the resulting best fit are used to generate samples from the
theoretical distribution, which are used for filling a finite-size area with
non-overlapping disks deployed by a Simple Sequential Inhibition stochastic
point process. Such filled areas are relevant as plausible inputs for assessing
Discrete Element Method and similar techniques
CRY2 Is Associated with Rapid Cycling in Bipolar Disorder Patients
Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts.Four CRY2 SNPs spanning from intron 2 to downstream 3'UTR were analyzed for association to bipolar disorder type 1 (n = 497), bipolar disorder type 2 (n = 60) and bipolar disorder with the feature rapid cycling (n = 155) versus blood donors (n = 1044) in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422). The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006-0.02), whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3-1.4, P = 0.03-0.04) and AGGA (OR = 1.5, P = 0.05). The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes.We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder
Linkages between aggregate formation, porosity and soil chemical properties
Linkages between soil structure and physical–chemical soil properties are still poorly understood due to the wide size-range at which aggregation occurs and the variety of aggregation factors involved. To improve understanding of these processes, we collected data on aggregate fractions, soil porosity, texture and chemical soil properties of 127 soil samples from three European Critical Zone Observatories. First, we assessed mechanistic linkages between porosity and aggregates. There was no correlation between the fractions of dry-sieved aggregates (N1 mm, DSA) and water-stable aggregates (N0.25 µm, WSA). Soil microporosity and micro + mesoporosity increased with increasing abundance of aggregates, though this correlation was only significant for the WSA fraction. The fraction of DSA did not affect the overall porosity of the soil, but affected the ratio between micro- and mesopores (¿30 kPa/¿0.25 kPa), suggesting that micropores are dominantly located within DSA whereas mesopores are located in betweenDSA and loose particles. Second,we studied the relations between the physical and chemical soil properties and soil structure. Soil texture had only a minor effect on the fractions ofWSA and DSAwhereas Fe-(hydr)oxide content was correlated positively with bothWSA fraction and porosity. This may be attributed to Fe-(hydr)oxides providing adsorption sites for organic substances on larger minerals, thereby enabling poorly reactive mineral particles to be taken up in the network of organic substances. The fraction ofWSA increased with an increase in the soil organic carbon (SOC) and Fe-(hydr)oxides content and with a decrease in pH. This pH-effect can be explained by the enhanced coagulation of organically-coated particles at a lower pH. Overall, this study indicates that mechanistic linkages exist between soil chemical properties, aggregate formation and soil porosity
Experimental evidence of TICT state in 4-piperidinyl-1,8-naphthalimide – a kinetic and mechanistic study
The excited state processes in N-propyl-4-piperidinyl-1,8-naphthalimide have been studied by measuring its fluorescence spectra and decay curves in solvents of different polarity and viscosity and also in a frozen solvent glass. The results unanimously proved the formation of a dark twisted intramolecular charge transfer (TICT) state from the emissive charge transfer (CT) species, the direct product of excitation. The rate coefficients of the TICT process and the deactivations of the CT and TICT species were determined, using a reversible two-state kinetic model. The temperature dependence of the kinetic data was consistent with a kinetic barrier consisting of three terms, the inherent barrier of the reaction, and the contributions of the solute–solvent interactions related to the solvent viscosity and polarity. The potential energy surfaces were calculated in the S0 and the S1 states along the coordinate of turning motion which was conclusive concerning the direction of the twisting and indicated a possible conformational change of the piperidinyl unit. The theoretical calculations confirmed that the TICT species is dark and has a stronger charge transfer character compared to the CT state
Strong ion pair charge transfer interaction of 1,8-naphthalimide-bipyridinium conjugates with basic anions - towards the development of a new type of turn-on fluorescent anion sensors
The electron transfer processes of two conjugates consisting of an N,N′-dimethyl-bipyridinium unit and an 1,8-naphthalimide or 4-piperidinyl-1,8-naphthalimide fluorophore have been investigated. The two dyads show only weak fluorescence due to the intramolecular photoinduced electron transfer (PET) from the naphthalimide to the bipyridinium moiety. The dyads form radical pairs with the Lewis-base anions such as fluoride, acetate and benzoate via intermolecular electron transfer from the anions to the bipyridinium units. The electron transfer from the anions is indicated by an intense coloration – due to the absorption of the bipyridinium radicals – and a dramatic enhancement of the fluorescence intensity due to the cancellation of intramolecular PET in the dyads. These results demonstrate the efficient operation of bipyridinium–naphthalimide conjugates as signal transduction units from which a new type of turn-on fluorescent anion sensors may be created