3,124 research outputs found

    SPIRE imaging of M 82: Cool dust in the wind and tidal streams

    Get PDF
    M 82 is a unique representative of a whole class of galaxies, starbursts with superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its interaction with the M 81 group has stripped a significant portion of its interstellar medium from its disk. SPIRE maps now afford better characterization of the far-infrared emission from cool dust outside the disk, and sketch a far more complete picture of its mass distribution and energetics than previously possible. They show emission coincident in projection with the starburst wind and in a large halo, much more extended than the PAH band emission seen with Spitzer. Some complex substructures coincide with the brightest PAH filaments, and others with tidal streams seen in atomic hydrogen. We subtract the far-infrared emission of the starburst and underlying disk from the maps, and derive spatially-resolved far-infrared colors for the wind and halo. We interpret the results in terms of dust mass, dust temperature, and global physical conditions. In particular, we examine variations in the dust physical properties as a function of distance from the center and the wind polar axis, and conclude that more than two thirds of the extraplanar dust has been removed by tidal interaction, and not entrained by the starburst wind

    Application of the Frobenius method to the Schrodinger equation for a spherically symmetric potential: anharmonic oscillator

    Full text link
    The power series method has been adapted to compute the spectrum of the Schrodinger equation for central potential of the form V(r)=d−2r2+d−1r+∑i=0∞diriV(r)={d_{-2}\over r^2}+{d_{-1}\over r}+\sum_{i=0}^{\infty} d_{i}r^i. The bound-state energies are given as zeros of a calculable function, if the potential is confined in a spherical box. For an unconfined potential the interval bounding the energy eigenvalues can be determined in a similar way with an arbitrarily chosen precision. The very accurate results for various spherically symmetric anharmonic potentials are presented.Comment: 16 pages, 5 figures, published in J. Phys

    The physical characteristics of the gas in the disk of Centaurus A using the Herschel Space Observatory

    Get PDF
    We search for variations in the disk of Centaurus A of the emission from atomic fine structure lines using Herschel PACS and SPIRE spectroscopy. In particular we observe the [C II](158 ÎŒ\mum), [N II](122 and 205 ÎŒ\mum), [O I](63 and 145 ÎŒ\mum) and [O III](88 ÎŒ\mum) lines, which all play an important role in cooling the gas in photo-ionized and photodissociation regions. We determine that the ([C II]+[O I]63_{63})/FTIRF_{TIR} line ratio, a proxy for the heating efficiency of the gas, shows no significant radial trend across the observed region, in contrast to observations of other nearby galaxies. We determine that 10 - 20% of the observed [C II] emission originates in ionized gas. Comparison between our observations and a PDR model shows that the strength of the far-ultraviolet radiation field, G0G_0, varies between 101.7510^{1.75} and 102.7510^{2.75} and the hydrogen nucleus density varies between 102.7510^{2.75} and 103.7510^{3.75} cm−3^{-3}, with no significant radial trend in either property. In the context of the emission line properties of the grand-design spiral galaxy M51 and the elliptical galaxy NGC 4125, the gas in Cen A appears more characteristic of that in typical disk galaxies rather than elliptical galaxies.Comment: Accepted for publication in the Astrophysical Journal. 22 pages, 10 figures, 5 table

    An open and parallel multiresolution framework using block-based adaptive grids

    Full text link
    A numerical approach for solving evolutionary partial differential equations in two and three space dimensions on block-based adaptive grids is presented. The numerical discretization is based on high-order, central finite-differences and explicit time integration. Grid refinement and coarsening are triggered by multiresolution analysis, i.e. thresholding of wavelet coefficients, which allow controlling the precision of the adaptive approximation of the solution with respect to uniform grid computations. The implementation of the scheme is fully parallel using MPI with a hybrid data structure. Load balancing relies on space filling curves techniques. Validation tests for 2D advection equations allow to assess the precision and performance of the developed code. Computations of the compressible Navier-Stokes equations for a temporally developing 2D mixing layer illustrate the properties of the code for nonlinear multi-scale problems. The code is open source

    Measurement of two-halo neutron transfer reaction p(11^{11}Li,9^{9}Li)t at 3AA MeV

    Get PDF
    The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time at an incident energy of 3AA MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differential cross sectionshave been determined for transitions to the \nuc{9}{Li} ground andthe first excited states in a wide range of scattering angles. Multistep transfer calculations using different \nuc{11}{Li} model wave functions, shows that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter

    Dissecting the origin of the submillimeter emission in nearby galaxies with Herschel and LABOCA

    Get PDF
    We model the infrared to submillimeter spectral energy distribution of 11 nearby galaxies of the KINGFISH sample using Spitzer and Herschel data and compare model extrapolations at 870um (using different fitting techniques) with LABOCA 870um observations. We investigate how the differences between predictions and observations vary with model assumptions or environment. At global scales, we find that modified blackbody models using realistic cold emissivity indices (beta_c=2 or 1.5) are able to reproduce the 870um observed emission within the uncertainties for most of the sample. Low values (beta_c<1.3) would be required in NGC0337, NGC1512 and NGC7793. At local scales, we observe a systematic 870um excess when using beta_=2.0. The beta_c=1.5 or the Draine and Li (2007) models can reconcile predictions with observations in part of the disks. Some of the remaining excesses occur towards the centres and can be partly or fully accounted for by non-dust contributions such as CO(3-2) or, to a lesser extent, free-free or synchrotron emission. In three non-barred galaxies, the remaining excesses rather occur in the disk outskirts. This could be a sign of a flattening of the submm slope (and decrease of the effective emissivity index) with radius in these objects.Comment: 31 pages (including appendix), 7 figures, accepted for publication in MNRA

    Powerful H2_2 Emission and Star Formation on the Interacting Galaxy System Arp 143: Observations with Spitzer and GALEX

    Get PDF
    We present new mid-infrared (5−35ÎŒ5 - 35\mum) and ultraviolet (1539 -- 2316 \AA) observations of the interacting galaxy system Arp 143 (NGC 2444/2445) from the Spitzer Space Telescope and GALEX. In this system, the central nucleus of NGC 2445 is surrounded by knots of massive star-formation in a ring-like structure. We find unusually strong emission from warm H2_2 associated with an expanding shock wave between the nucleus and the western knots. At this ridge, the flux ratio between H2_2 and PAH emission is nearly ten times higher than in the nucleus. Arp 143 is one of the most extreme cases known in that regard. From our multi-wavelength data we derive a narrow age range of the star-forming knots between 2 Myr and 7.5 Myr, suggesting that the ring of knots was formed almost simultaneously in response to the shock wave traced by the H2_2 emission. However, the knots can be further subdivided in two age groups: those with an age of 2--4 Myr (knots A, C, E, and F), which are associated with 8ÎŒ8\mum emission from PAHs, and those with an age of 7-8 Myr (knots D and G), which show little or no 8ÎŒ8\mum emission shells surrounding them. We attribute this finding to an ageing effect of the massive clusters which, after about 6 Myr, no longer excite the PAHs surrounding the knots.Comment: 19 pages, 11 figures, including tables at the end; accepted by Ap
    • 

    corecore