15,807 research outputs found
Wash water recovery system
The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design
Space station molecular sieve development
An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants
Development of a solar-powered residential air conditioner: System optimization preliminary specification
Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump
Topological Correlations in a Layer Adsorbed on a Crystal Surface
The incoherent scattering of electrons by a layer adsorbed at a single crystal surface is
determined by the topological correlations of elements forming the adsorbed layer. The model for the
description of atoms or molecules adsorbed on the surface is formulated in terms of occupation
operators which are expressed in terms of pseudospin operators with a given spin value. The
correlations can be determined by the fluctuation dissipation theorem in connection with the
susceptibility or given directly by means of the Green functions properly chosen. An example of the
topological or chemical disorder of two components is considered in detail. The calculations of the
topological correlations allow us to find the incoherent scattering amplitude as a function of the
surface coverage which can be experimentally detected.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę
Quantum phases of mixtures of atoms and molecules on optical lattices
We investigate the phase diagram of a two-species Bose-Hubbard model
including a conversion term, by which two particles from the first species can
be converted into one particle of the second species, and vice-versa. The model
can be related to ultra-cold atom experiments in which a Feshbach resonance
produces long-lived bound states viewed as diatomic molecules. The model is
solved exactly by means of Quantum Monte Carlo simulations. We show than an
"inversion of population" occurs, depending on the parameters, where the second
species becomes more numerous than the first species. The model also exhibits
an exotic incompressible "Super-Mott" phase where the particles from both
species can flow with signs of superfluidity, but without global supercurrent.
We present two phase diagrams, one in the (chemical potential, conversion)
plane, the other in the (chemical potential, detuning) plane.Comment: 7 pages, 10 figure
Experimental validation of the mechanical coupling response for hygro-thermally curvature-stable laminated composite materials
Stacking sequence configurations for hygro-thermally curvature-stable (HTCS) laminates have recently been identified in 9 classes of coupled laminate with standard ply angle orientations +45, "1245, 0 and 9
Feshbach-Einstein condensates
We investigate the phase diagram of a two-species Bose-Hubbard model
describing atoms and molecules on a lattice, interacting via a Feshbach
resonance. We identify a region where the system exhibits an exotic super-Mott
phase and regions with phases characterized by atomic and/or molecular
condensates. Our approach is based on a recently developed exact quantum Monte
Carlo algorithm: the Stochastic Green Function algorithm with tunable
directionality. We confirm some of the results predicted by mean-field studies,
but we also find disagreement with these studies. In particular, we find a
phase with an atomic but no molecular condensate, which is missing in all
mean-field phase diagrams.Comment: 4 pages, 6 figure
Compressive Pattern Matching on Multispectral Data
We introduce a new constrained minimization problem that performs template
and pattern detection on a multispectral image in a compressive sensing
context. We use an original minimization problem from Guo and Osher that uses
minimization techniques to perform template detection in a multispectral
image. We first adapt this minimization problem to work with compressive
sensing data. Then we extend it to perform pattern detection using a formal
transform called the spectralization along a pattern. That extension brings out
the problem of measurement reconstruction. We introduce shifted measurements
that allow us to reconstruct all the measurement with a small overhead and we
give an optimality constraint for simple patterns. We present numerical results
showing the performances of the original minimization problem and the
compressed ones with different measurement rates and applied on remotely sensed
data.Comment: Published in IEEE Transactions on Geoscience and Remote Sensin
- …