305 research outputs found

    Applicability of the bulk-transfer approach to estimate evapotranspiration from boreal peatlands

    Get PDF
    In northern landscapes, peatlands are widespread and their hydrological processes are complex. Furthermore, they are typically remote, limiting the amount and accuracy of in situ measurements. This is especially the case for evapotranspiration ET, which strongly influences watershed hydrology. The objective of this paper is to demonstrate the validity of the bulk-transfer approach to estimate ET over boreal peatlands. The simplicity of the model relies on four assumptions: (i) near-neutral atmospheric conditions; (ii) wet surface; (iii) constant momentum roughness length depending on vegetation height; and (iv) constant water vapor roughness length, with the last two assumptions implying a constant water vapor transfer coefficient CE. Using eddy covariance data from three Canadian peatlands—Necopastic (James Bay, Québec), Mer Bleue (Ottawa, Ontario), and Western Peatland (Athabasca, Alberta)—this paper shows that these sites are characterized by frequent occurrences of near-neutral atmospheric conditions, especially the Necopastic site, with nearly 76% of the 30-min data segments occurring under near-neutral stratification. The analysis suggests these near-neutral conditions occur as a result of strong mechanical turbulence and weak buoyancy effects. The bulk-transfer approach gives promising results for 30-min and daily ET in terms of mean error and correlation, with performances similar to the Penman equation, without requiring net radiation data. The accuracy of the approach is likely related to the number of near-neutral periods and the elevated position of the water table, which backs up the wet surface assumption

    High-contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers

    Full text link
    An ultrabroadband seed source for high-power, high-contrast OPCPA systems at 800 nm is presented. The source is based on post compression in a hollow-core fiber followed by crossed polarized waves (XPW) filtering and is capable of delivering 80μ\muJ, 5fs, CEP-stable (0.3rad RMS) pulses with excellent spectral and temporal qualit

    Impacts of high precipitation on the energy and water budgets of a humid boreal forest

    Get PDF
    The boreal forest will be strongly affected by climate change and in turn, these vast ecosystems may significantly impact global climatology and hydrology due to their exchanges of carbon and water with the atmosphere. It is now crucial to understand the intricate relationships between precipitation and evapotranspiration in these environments, particularly in less-studied locations characterized by a cold and humid climate. This study presents state-of-the-art measurements of energy and water budgets components over three years (2016–2018) at the Montmorency Forest, Québec, Canada: a balsam fir boreal forest that receives ∼1600 mm of precipitation annually (continental subarctic climate; Köppen classification subtype Dfc). Precipitation, evapotranspiration and potential evapotranspiration at the site are compared with observations from thirteen experimental sites around the world. These intercomparison sites (89 study-years) encompass various types of climate and vegetation (black spruces, jack pines, etc.) encountered in boreal forests worldwide. The Montmorency Forest stands out by receiving the largest amount of precipitation. Across all sites, water availability seems to be the principal evapotranspiration constraint, as precipitation tends to be more influential than potential evapotranspiration and other factors. This leads to the Montmorency Forest generating the largest amount of evapotranspiration, on average ∼550 mm y−1. This value appears to be an ecosystem maximum for evapotranspiration, which may be explained either by a physiological limit or a limited energy availability due to the presence of cloud cover. The Montmorency Forest water budget evacuates the precipitation excess mostly by watershed discharges, at an average rate of ∼1050 mm y−1, with peaks during the spring freshet. This behaviour, typical of mountainous headwater basins, necessarily influence downstream hydrological regimes to a large extent. This study provides a much needed insight in the hydrological regimes of a humid boreal-forested mountainous watershed, a type of basin rarely studied with precise energy and water budgets before

    Verification of Regional Deterministic Precipitation Analysis Products Using Snow Data Assimilation for Application in Meteorological Network Assessment in Sparsely Gauged Nordic Basins.

    Get PDF
    Sparse precipitation information can result in uncertainties in hydrological modeling practices. Precipitation observation network augmentation is one way to reduce the uncertainty. Meanwhile, in basins with snowpack-dominated hydrology, in the absence of a high-density precipitation observation network, assimilation of in situ and remotely sensed measurements of snowpack state variables can also provide the possibility to reduce flow estimation uncertainty. Similarly, assimilation of existing precipitation observations into gridded numerical precipitation products can alleviate the adverse effects of missing information in poorly instrumented basins. In Canada, the Regional Deterministic Precipitation Analysis (RDPA) data from the Canadian Precipitation Analysis (CaPA) system have been increasingly applied for flow estimation in sparsely gauged Nordic basins. Moreover, CaPA-RDPA data have also been applied to establish observational priorities for augmenting precipitation observation networks. However, the accuracy of the assimilated data should be validated before being applicable in observation network assessment. The assimilation of snowpack state variables has proven to significantly improve streamflow estimates, and therefore, it can provide the benchmark against which the impact of assimilated precipitation data on streamflow simulation can be compared. Therefore, this study introduces a parsimonious framework for performing a proxy validation of the precipitation-assimilated products through the application of snow assimilation in physically based hydrologic models. This framework is demonstrated to assess the observation networks in three boreal basins in Yukon, Canada. The results indicate that in most basins, the gridded analysis products generally enjoyed the level of accuracy required for accurate flow simulation and therefore were applied in the meteorological network assessment in those cases
    • …
    corecore