29 research outputs found

    Lineage replacement and evolution captured by 3 years of the United Kingdom Coronavirus (COVID-19) Infection Survey

    Get PDF
    The Office for National Statistics Coronavirus (COVID-19) Infection Survey (ONS-CIS) is the largest surveillance study of SARS-CoV-2 positivity in the community, and collected data on the United Kingdom (UK) epidemic from April 2020 until March 2023 before being paused. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing the sequenced samples collected by the ONS-CIS during this period. We observed a series of sweeps or partial sweeps, with each sweeping lineage having a distinct growth advantage compared to their predecessors, although this was also accompanied by a gradual fall in average viral burdens from June 2021 to March 2023. The sweeps also generated an alternating pattern in which most samples had either S-gene target failure (SGTF) or non-SGTF over time. Evolution was characterized by steadily increasing divergence and diversity within lineages, but with step increases in divergence associated with each sweeping major lineage. This led to a faster overall rate of evolution when measured at the between-lineage level compared to within lineages, and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens

    Secondary attack rates in primary and secondary school bubbles following a confirmed case: Active, prospective national surveillance, November to December 2020, England.

    Get PDF
    BACKGROUND: Following the full re-opening of schools in England and emergence of the SARS-CoV-2 Alpha variant, we investigated the risk of SARS-CoV-2 infection in students and staff who were contacts of a confirmed case in a school bubble (school groupings with limited interactions), along with their household members. METHODS: Primary and secondary school bubbles were recruited into sKIDsBUBBLE after being sent home to self-isolate following a confirmed case of COVID-19 in the bubble. Bubble participants and their household members were sent home-testing kits comprising nasal swabs for RT-PCR testing and whole genome sequencing, and oral fluid swabs for SARS-CoV-2 antibodies. RESULTS: During November-December 2020, 14 bubbles were recruited from 7 schools, including 269 bubble contacts (248 students, 21 staff) and 823 household contacts (524 adults, 299 children). The secondary attack rate was 10.0% (6/60) in primary and 3.9% (4/102) in secondary school students, compared to 6.3% (1/16) and 0% (0/1) among staff, respectively. The incidence rate for household contacts of primary school students was 6.6% (12/183) and 3.7% (1/27) for household contacts of primary school staff. In secondary schools, this was 3.5% (11/317) and 0% (0/1), respectively. Household contacts were more likely to test positive if their bubble contact tested positive although there were new infections among household contacts of uninfected bubble contacts. INTERPRETATION: Compared to other institutional settings, the overall risk of secondary infection in school bubbles and their household contacts was low. Our findings are important for developing evidence-based infection prevention guidelines for educational settings

    Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey

    Get PDF
    Background: Decisions about the continued need for control measures to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on accurate and up-to-date information about the number of people testing positive for SARS-CoV-2 and risk factors for testing positive. Existing surveillance systems are generally not based on population samples and are not longitudinal in design. Methods: Samples were collected from individuals aged 2 years and older living in private households in England that were randomly selected from address lists and previous Office for National Statistics surveys in repeated crosssectional household surveys with additional serial sampling and longitudinal follow-up. Participants completed a questionnaire and did nose and throat self-swabs. The percentage of individuals testing positive for SARS-CoV-2 RNA was estimated over time by use of dynamic multilevel regression and poststratification, to account for potential residual non-representativeness. Potential changes in risk factors for testing positive over time were also assessed. The study is registered with the ISRCTN Registry, ISRCTN21086382. Findings: Between April 26 and Nov 1, 2020, results were available from 1 191 170 samples from 280327 individuals; 5231 samples were positive overall, from 3923 individuals. The percentage of people testing positive for SARS-CoV-2 changed substantially over time, with an initial decrease between April 26 and June 28, 2020, from 0·40% (95% credible interval 0·29–0·54) to 0·06% (0·04–0·07), followed by low levels during July and August, 2020, before substantial increases at the end of August, 2020, with percentages testing positive above 1% from the end of October, 2020. Having a patient facing role and working outside your home were important risk factors for testing positive for SARS-CoV-2 at the end of the first wave (April 26 to June 28, 2020), but not in the second wave (from the end of August to Nov 1, 2020). Age (young adults, particularly those aged 17–24 years) was an important initial driver of increased positivity rates in the second wave. For example, the estimated percentage of individuals testing positive was more than six times higher in those aged 17–24 years than in those aged 70 years or older at the end of September, 2020. A substantial proportion of infections were in individuals not reporting symptoms around their positive test (45–68%, dependent on calendar time. Interpretation: Important risk factors for testing positive for SARS-CoV-2 varied substantially between the part of the first wave that was captured by the study (April to June, 2020) and the first part of the second wave of increased positivity rates (end of August to Nov 1, 2020), and a substantial proportion of infections were in individuals not reporting symptoms, indicating that continued monitoring for SARS-CoV-2 in the community will be important for managing the COVID-19 pandemic moving forwards

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocomposites

    No full text
    Graphene oxide (GO) prepared using the Hummers’ method is known to be composed of functionalized graphene sheets decorated by strongly-bound oxidative debris that can be removed by a simple base wash. The use of as-made GO and base-washed GO as reinforcing fillers in poly(methyl methacrylate) (PMMA) nanocomposites has been compared through dynamic mechanical thermal analysis and tensile testing. Nanocomposites with loadings from 0.5 to 10 wt.% were produced by melt mixing using a twin screw extruder. Large shifts in the values of Tg for the nanocomposites with respect to PMMA suggest the presence of interactions between the GO and polymer. Thermogravimetric analysis also revealed a significant increase in the decomposition temperatures upon the addition of the GO. Optimal loadings of 1 wt.% were found for both fillers, up to which substantial mechanical reinforcement was observed. Comparison with previous nanotube systems, suggests that there was a good dispersion of both fillers below 1 wt.%, with aggregation and a deterioration of the mechanical properties occurring at higher loadings. Stress-induced shifts of the Raman D band in the GO revealed the existence of stress-transfer from the PMMA matrix to the fillers during deformation. Overall the as-made GO gave nanocomposites with better properties than those reinforced with based-washed material. Hence, it appears that the presence of the oxidative debris in GO, which acts as a compatibilising surfactant, is beneficial in producing nanocomposites with both a good dispersion and a strong interface between GO and a polymer matrix
    corecore