494 research outputs found
Accurate and rapid technique for leaf area measurment in medlar (Mespilus germanica L.)
A model to estimate medlar (Mespilus germanica) leaf area across genotypes was obtained by means of linear measurements in 2005-06
Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 Salinization
Callistemon citrinus and Viburnum lucidum are very appreciated and widespread ornamental shrubs for their abundant flowering and/or brilliant foliage. The intrinsic tolerance to drought/salinity supports their use in urban areas and in xeriscaping. Despite adaptive responses of these ornamental species to sodium chloride (NaCl) have been extensively explored, little is known on the effects of other salt solution, yet iso-osmotic, on their growth, mineral composition and metabolism. The present research aimed to assess responses at the biochemical, physiological and anatomical levels to iso-osmotic salt solutions of NaCl and CaCl2 to discriminate the effects of osmotic stress and ion toxicity. The two ornamental species developed different salt-tolerance mechanisms depending on the salinity sources. The growth parameters and biomass production decreased under salinization in both ornamental species, independently of the type of salt, with a detrimental effect of CaCl2 on C. citrinus. The adaptive mechanisms adopted by the two ornamental species to counteract the NaCl salinity were similar, and the decline in growth was mostly related to stomatal limitations of net CO2 assimilation rate, together with the reduction in leaf chlorophyll content (SPAD index). The stronger reduction of C. citrinus growth compared to V. lucidum, was due to an exacerbated reduction in net photosynthetic rate, driven by both stomatal and non stomatal limitations. In similar conditions, V. lucidum exhibited other additional adaptive response, such as modification in leaf functional anatomical traits, mostly related to the reduction in the stomata size allowing plants a better control of stomata opening than in C. citrinus. However, C. citrinus plants displayed an increased ability to retain higher Cl- levels in leaves than in roots under CaCl2 salinity compared to V. lucidum, thus, indicating a further attempt to counteract chloride toxicity through an increased vacuolar compartmentalization and to take advantages of them as chip osmotica
Chemical Eustress Elicits Tailored Responses and Enhances the Functional Quality of Novel Food Perilla frutescens
Consumer demand for fresh and functional horticultural products is on the rise. Perilla frutescens, L. Britt (Lamiaceae) is a potential specialty/niche crop for consumption and therapeutic uses with high contents of phenolic and volatile compounds. Plant growth, mineral composition, polyphenol profile and aroma volatile components of two perilla genotypes in response to salinity (non-salt control, 10, 20 or 30 mM NaCl) applied as chemical eustressor were assessed. Salinity suppressed growth and yield of both genotypes, although the red-pigmented genotype was less sensitive than the green-pigmented one. Mild (10 mM NaCl) and moderate (20 and 30 mM NaCl) salinity suppressed foliar potassium, magnesium, nitrate and chlorophyll a concentrations of both genotypes and increased the levels of rosmarinic acid, total polyphenols and target aroma volatilecomponents. Greenperillashowedhigheryieldandbiomassproductionandhighercontentof protein,drymatter,calcium,magnesium,perillaketoneandcis-jasmone,whereasredperillaexhibited higher content of potassium, chlorophyll a, rosmarinic acid, total polyphenols, perilla aldehyde and benzaldehyde. Ourfindingssupportthatchemicaleustressorssuchasmildtomoderatesalinityoffer valuable means to manipulate phytochemical and aroma profiles
Biostimulatory Action of Arbuscular Mycorrhizal Fungi Enhances Productivity, Functional and Sensory Quality in ‘Piennolo del Vesuvio’ Cherry Tomato Landraces
Arbuscular mycorrhizal fungi (AMF) are a promising tool to improve plant nutrient use efficiency (NUE) and tolerance against abiotic stresses. Moreover, AMF can potentially increase plant productivity and reduce the negative externalities of the agricultural sector. Our study aimed to elucidate whether AMF (containing Rhizoglomus irregulare and Funneliformis mosseae) could positively affect not only tomato growth and productivity but also the nutritional and nutraceutical quality of yellow-pigmented type (‘Giagiù’) and red-pigmented type (‘Lucariello’) tomatoes (Solanum lycopersicum L.). These cherry tomatoes are landraces of the Protected Designation of Origin (PDO) ‘Pomodorino del Piennolo del Vesuvio’ (PPV), one of the most typical agricultural products of the Campania region (Southern Italy). AMF rose fruit yield by increasing the number of fruits per plant (+49% and +29% in ‘Giagiù’ and ‘Lucariello’, respectively) but not of the fruit mean mass. AMF increased lycopene (+40%), total ascorbic acid (TAA; +41%), alanine (+162%), gamma-Aminobutyric acid (GABA; +101%) and branched-chain amino acids (BCAAs; +53%) in ‘Lucariello’. In ‘Giagiù’, AMF increased calcium (+63%), zinc (+45%), ASP (+70%), GABA (+53%) and the essential amino acids arginine (+58%) and lysine (+45%), also indicating a genotype-specific response. In both landraces, AMF improved nutrient uptake and biosynthesis of important molecules involved in the control the oxidative stress and cellular pH. In addition to the beneficial effects of human health, the molecules influenced by the AMF treatment are expected to extend the shelf life of tomato fruits, thus further promoting the useful agronomic application of AMF for premium tomatoes marketed fresh or in pendulums (‘piennoli’)
Impact of Ecklonia maxima Seaweed Extract and Mo foliar treatments on biofortification, spinach yield, quality and NUE
Seaweed extract (SE) application is a contemporary and sustainable agricultural practice used to improve yield and quality of vegetable crops. Plant biofortification with trace element is recognized as a major tool to prevent mineral malnourishment in humans. Mo deficiency causes numerous dysfunctions, mostly connected to central nervous system and esophageal cancer. The current research was accomplished to appraise the combined effect of Ecklonia maxima brown seaweed extract (SE) and Mo dose (0, 0.5, 2, 4 or 8 \u3bcmol L 121) on yield, biometric traits, minerals, nutritional and functional parameters, as well as nitrogen indices of spinach plants grown in a protected environment (tunnel). Head fresh weight (FW), ascorbic acid, polyphenols, N, P, K, Mg and nitrogen use efficiency (NUE) were positively associated with SE treatment. Moreover, head FW, head height (H), stem diameter (SD), ascorbic acid, polyphenols, carotenoids as well as NUE indices were enhanced by Mo\u2010biofortification. A noticeable improvement in number of leaves (N. leaves), head dry matter (DM) and Mo concentration in leaf tissues was observed when SE application was combined with a Mo dosage of 4 or 8 \u3bcmol L 121. Overall, our study highlighted that E. maxima SE treatment and Mo supply can improve both spinach production and quality via the key enzyme activity involved in the phytochemical homeostasis of SE and the plant nutritional status modification resulting in an enhanced spinach Mo tolerance
Morpho-Physiological and Biochemical Responses of Hydroponically Grown Basil Cultivars to Salt Stress
Depending on duration and magnitude, abiotic stresses interfere with plant metabolic
processes and may severely impact developmental and qualitative attributes. In this study, in
addition to characterizing three different cultivars of basil (‘Anise’, ‘Cinnamon’, and ‘Lemon’)
grown under hydroponics, we appraised the impact of NaCl salt stress (60 mM) on
morphophysiological and nutraceutical properties of the basil crop. Salt stress significantly reduced
fresh yield (51.54%, on average) and photosynthetic parameters (ACO2, E, and gs) in all cultivars by
raising tissue concentrations of Na+ and Cl−. In addition to reducing the concentration of nitrate
(77.21%), NaCl salt stress increased the concentrations of key bioactive molecules, notably
carotenoids (lutein and β-carotene), phenolic acids, and flavonoid derivatives, thus resulting in a
higher antioxidant activity of salt-treated basil plants compared to the untreated ones. Analysis by
UHPLC revealed that cichoric acid was the most abundant polyphenolic compound in all basil
cultivars, with the highest values recorded in ‘Cinnamon’
Sensory Attributes and Consumer Acceptability of 12 Microgreens Species
Microgreens are gaining increasing recognition among consumers, acclaimed for their freshness and health promoting properties associated with densely fortified secondary metabolites. These immature greens enhance human diet and enrich it with sharp colors and flavors. While numerous species are being tested for agronomic and nutritional suitability, consumer acceptance of appearance, texture, and flavor is critical for the microgreens' marketplace success. This study investigates whether sensory attributes and visual appearance affect consumer preference for microgreens and their willingness to consume them. By means of a consumer test, the sensory attributes of 12 microgreens species were evaluated, wherein a partial least squares structural equation model was developed to link sensorial attributes to willingness to eat the product. The results showed that although visual appearance of the microgreens was largely appreciated, consumer acceptance overall was mainly determined by flavor and texture. In particular, the lower the astringency, sourness, and bitterness, the higher the consumer acceptability of microgreens. Among the 12 examined species, mibuna and cress scored the lowest acceptance by consumers, while Swiss chard and coriander were the most appreciated, being therefore good candidates to be introduced in Western country markets. In addition, both Swiss chard and coriander have been identified by previous literature as good dietary source of phenolic antioxidants
Antimicrobial properties, cytotoxic effects, and fatty acids composition of vegetable oils from purslane, linseed, luffa, and pumpkin seeds
In the present study, the antimicrobial and cytotoxic activities, as well as the fatty acids composition in vegetable seed oils from linseed, purslane, luffa, and pumpkin were evaluated. For this purpose, two linseed oils and one luffa oil were commercially obtained, while purslane and pumpkin oils were obtained from own cultivated seeds. The results showed a variable fatty acids composition among the tested oils, with α-linolenic, linoleic, oleic, palmitic, and stearic acid being the most abundant compounds. In regards to particular oils, linseed oils were a rich source of α-linolenic acid, luffa and pumpkin oil were abundant in linoleic acid, while purslane oil presented a balanced composition with an almost similar amount of both fatty acids. Luffa oil was the most effective against two of the tested cancer cell lines, namely HeLa (cervical carcinoma) and NCI-H460 (non-small cell lung cancer), while it also showed moderate toxicity against non-tumor cells (PLP2 cell line). Regarding the antibacterial activity, linseed oil 3 and pumpkin oil showed the highest activity against most of the tested bacteria (especially against Enterobacter cloacae and Escherichia coli) with MIC and MBC values similar to the used positive controls (E211 and E224). All the tested oils showed significant antifungal activities, especially luffa and pumpkin oil, and for most of the tested fungi they were more effective than the positive controls, as for example in the case of Aspergillus versicolor, A. niger, and Penicillium verrucosum var. cyclopium. In conclusion, the results of our study showed promising antimicrobial and cytotoxic properties for the studied seed oils which could be partly attributed to their fatty acids composition, especially the long-chain ones with 12–18 carbons.This work was funded by the General Secretariat for Research and Technology of Greece
and PRIMA foundation under the project PULPING (Prima2019-08). The authors are grateful to
the Foundation for Science and Technology (FCT, Portugal) for financial support through national
funds FCT/MCTES to CIMO (UIDB/00690/2020); for the financial support through national funding
from the FCT, within the scope of the Project PRIMA Section 2—Multi-topic 2019: PulpIng
(PRIMA/0007/2019); and L. Barros and Â. Fernandes thank the national funding by FCT, P.I.,
through the institutional scientific employment program-contract for their contracts. The authors are
also grateful to the Ministry of Education, Science and Technological Development of the Republic of
Serbia, grant number 451-03-9/2021-14/ 200007.info:eu-repo/semantics/publishedVersio
- …