212 research outputs found
Regularization of the Hamiltonian constraint and the closure of the constraint algebra
In the paper we discuss the process of regularization of the Hamiltonian
constraint in the Ashtekar approach to quantizing gravity. We show in detail
the calculation of the action of the regulated Hamiltonian constraint on Wilson
loops. An important issue considered in the paper is the closure of the
constraint algebra. The main result we obtain is that the Poisson bracket
between the regulated Hamiltonian constraint and the Diffeomorphism constraint
is equal to a sum of regulated Hamiltonian constraints with appropriately
redefined regulating functions.Comment: 23 pages, epsfig.st
A Comparison of the Ovulation Method With the CUE Ovulation Predictor in Determining the Fertile Period
The purpose of this study was to compare the CUE Ovulation Predictor with the ovulation method in determining the fertile period. Eleven regularly ovulating women measured their salivary and vaginal electrical resistance (ER) with the CUE, observed their cervical-vaginal mucus, and measured their urine for a luteinizing hormone (LH) surge on a daily basis. Data from 21 menstrual cycles showed no statistical difference (T= 0.33, p= 0.63) between the CUE fertile period, which ranged from 5 to 10 days (mean = 6.7 days, SD = 1.6), and the fertile period of the ovulation method, which ranged from 4 to 9 days (mean = 6.5 days, SD = 2.0). The CUE has potential as an adjunctive device in the learning and use of natural family planning methods
Brownian markets
Financial market dynamics is rigorously studied via the exact generalized
Langevin equation. Assuming market Brownian self-similarity, the market return
rate memory and autocorrelation functions are derived, which exhibit an
oscillatory-decaying behavior with a long-time tail, similar to empirical
observations. Individual stocks are also described via the generalized Langevin
equation. They are classified by their relation to the market memory as heavy,
neutral and light stocks, possessing different kinds of autocorrelation
functions
Quantum friction
The Brownian motion of a light quantum particle in a heavy classical gas is
theoretically described and a new expression for the friction coefficient is
obtained for arbitrary temperature. At zero temperature it equals to the de
Broglie momentum of the mean free path divided by the mean free path.
Alternatively, the corresponding mobility of the quantum particle in the
classical gas is equal to the square of the mean free path divided by the
Planck constant. The Brownian motion of a quantum particle in a quantum
environment is also discussed.Comment: The paper is dedicated to the 85th anniversary of N.N. Tyutyulko
Matrix Elements of Thiemann's Hamiltonian Constraint in Loop Quantum Gravity
We present an explicit computation of matrix elements of the hamiltonian
constraint operator in non-perturbative quantum gravity. In particular, we
consider the euclidean term of Thiemann's version of the constraint and compute
its action on trivalent states, for all its natural orderings. The calculation
is performed using graphical techniques from the recoupling theory of colored
knots and links. We exhibit the matrix elements of the hamiltonian constraint
operator in the spin network basis in compact algebraic form.Comment: 32 pages, 22 eps figures. LaTeX (Using epsfig.sty,ioplppt.sty and
bezier.sty). Submited to Classical and Quantum Gravit
Planned Cesarean or planned vaginal delivery for twins : secondary analysis of randomized controlled trial
ACKNOWLEDGMENTS We thank all the participants in the Twin Birth Study and the staff at the Centre for Mother, Infant, and Child Research for their hard work and dedication. The Twin Birth Study was supported by a grant (63164) from the Canadian Institute of Health Research. P.T. and M.H.Z. were supported by a grant from The Netherlands Organization for Scientific Research (NWO ‐ grant number 401.16.080). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists
Using the available structural information of the chemokine receptor CXCR4, we present hit finding and hit exploration studies that make use of virtual fragment screening, design, synthesis and structure-activity relationship (SAR) studies. Fragment 2 was identified as virtual screening hit and used as a starting point for the exploration of 31 N-substituted piperidin-4-yl-methanamine derivatives to investigate and improve the interactions with the CXCR4 binding site. Additionally, subtle structural ligand changes lead to distinct interactions with CXCR4 resulting in a full to partial displacement of CXCL12 binding and competitive and/or non-competitive antagonism. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and binding model studies were used to identify important hydrophobic interactions that determine binding affinity and indicate key ligand-receptor interactions
Multisite Comparison of MRI Defacing Software Across Multiple Cohorts
With improvements to both scan quality and facial recognition software, there is an increased risk of participants being identified by a 3D render of their structural neuroimaging scans, even when all other personal information has been removed. To prevent this, facial features should be removed before data are shared or openly released, but while there are several publicly available software algorithms to do this, there has been no comprehensive review of their accuracy within the general population. To address this, we tested multiple algorithms on 300 scans from three neuroscience research projects, funded in part by the Ontario Brain Institute, to cover a wide range of ages (3–85 years) and multiple patient cohorts. While skull stripping is more thorough at removing identifiable features, we focused mainly on defacing software, as skull stripping also removes potentially useful information, which may be required for future analyses. We tested six publicly available algorithms (afni_refacer, deepdefacer, mri_deface, mridefacer, pydeface, quickshear), with one skull stripper (FreeSurfer) included for comparison. Accuracy was measured through a pass/fail system with two criteria; one, that all facial features had been removed and two, that no brain tissue was removed in the process. A subset of defaced scans were also run through several preprocessing pipelines to ensure that none of the algorithms would alter the resulting outputs. We found that the success rates varied strongly between defacers, with afni_refacer (89%) and pydeface (83%) having the highest rates, overall. In both cases, the primary source of failure came from a single dataset that the defacer appeared to struggle with - the youngest cohort (3–20 years) for afni_refacer and the oldest (44–85 years) for pydeface, demonstrating that defacer performance not only depends on the data provided, but that this effect varies between algorithms. While there were some very minor differences between the preprocessing results for defaced and original scans, none of these were significant and were within the range of variation between using different NIfTI converters, or using raw DICOM files
Improvements in population-based survival of patients presenting with metastatic rectal cancer in the south of the Netherlands, 1992–2008
We analysed population-based treatment and survival data of patients who presented with metastatic rectal cancer. All patients diagnosed with primary synchronous metastatic rectal cancer between 1992 and 2008 in the Eindhoven Cancer Registry area were included. Date of diagnosis was divided into three periods (1992–1999, 2000–2004, 2005–2008) according to the availability of chemotherapy type. We assessed treatment patterns and overall survival according to period of diagnosis. The proportion of patients diagnosed with stage IV disease increased from 16% in 1992–1999 to 20% in 2005–2008 (P < 0.0001). Chemotherapy use increased from 5% in 1992 to 61% in 2008 (P < 0.0001). Resection rates of the primary tumour decreased from 65% in 1992 to 27% in 2008 (P < 0.0001), while metastasectomy rates remained constant since 1999 (9%). Median survival increased from 38 weeks (95% confidence interval (CI) 32–44) in 1992–1999 to 53 weeks (95% CI 48–61) in 2005–2008. Among patients not receiving chemotherapy median survival remained approximately 30 weeks. Multivariable analysis confirmed the lower risk of death among patients diagnosed in more recent years. Increased use of chemotherapy went together with improved median survival among patients with metastatic rectal cancer in the last two decades. Stage migration as an effect of more effective imaging procedures is likely to be partly responsible for this improved survival
Increased risk of second malignancies after in situ breast carcinoma in a population-based registry
Among 1276 primary breast carcinoma in situ (BCIS) patients diagnosed in 1972–2002 in the Southern Netherlands, 11% developed a second cancer. Breast carcinoma in situ patients exhibited a two-fold increased risk of second cancer (standardised incidence ratios (SIR): 2.1, 95% confidence interval (CI): 1.7–2.5). The risk was highest for a second breast cancer (SIR: 3.4, 95% CI: 2.6–4.3; AER: 66 patients per 10 000 per year) followed by skin cancer (SIR: 1.7, 95% CI: 1.1–2.6; AER: 17 patients per 10 000 per year). The increased risk of second breast cancer was similar for the ipsilateral (SIR: 1.9, 95% CI: 1.3–2.7) and contralateral (SIR: 2.0, 95% CI: 1.4–2.8) breast. Risk of second cancer was independent of age at diagnosis, type of initial therapy, histologic type of BCIS and period of diagnosis. Standardised incidence ratios of second cancer after BCIS (SIR: 2.3, 95% CI: 1.8–2.8) resembled that after invasive breast cancer (SIR: 2.2, 95% CI: 2.1–2.4). Surveillance should be directed towards second (ipsi- and contra-lateral) breast cancer
- …