107 research outputs found

    New medical treatments for lower urinary tract symptoms due to benign prostatic hyperplasia and future perspectives

    Get PDF
    Background: Lower Urinary Tract Symptoms (LUTS) in men are a common clinical problem in urology and have been historically strictly linked to benign prostatic hyperplasia (BPH), which may lead to bladder outlet obstruction (BOO). New molecules have been approved and have entered the urologists' armamentarium, targeting new signaling pathways and tackling specific aspects of LUTS. Objective of this review is to summarize the evidence regarding the new medical therapies currently available for male non-neurogenic LUTS, including superselective α1-antagonists, PDE-5 inhibitors, anticholinergic drugs and intraprostatic onabotulinum toxin injections. Methods: The National Library of Medicine Database was searched for relevant articles published between January 2006 and December 2015, including the combination of "BPH", "LUTS", "medical" and "new". Each article's title, abstract and text were reviewed for their appropriateness and their relevance. One hundred forty eight articles were reviewed. Results: Of the 148 articles reviewed, 92 were excluded. Silodosin may be considered a valid alternative to non-selective α1-antagonists, especially in the older patients where blood pressure alterations may determine major clinical problems and ejaculatory alterations may be not truly bothersome. Tadalafil 5 mg causes a significant decrease of IPSS score with an amelioration of patients' QoL, although with no significant increase in Qmax. Antimuscarinic drugs are effective on storage symptoms but should be used with caution in patients with elevated post-void residual. Intraprostatic injections of botulinum toxin are well-tolerated and effective, with a low rate of adverse events; however profound ameliorations were seen also in the sham arms of RCTs evaluating intraprostatic injections. Conclusion: New drugs have been approved in the last years in the medical treatment of BPH-related LUTS. Practicing urologists should be familair with their pharmacodynamics and pharmacokinetics

    Le dépistage du cancer de la prostate

    No full text
    info:eu-repo/semantics/publishe

    The Approach to the Ureter by Ureteroscopy

    No full text

    Antibodies targeting Prostate-Specific Membrane Antigen positive prostate cancer: from diagnostic imaging to theranostics

    No full text
    Purpose of review Targeting Prostate-Specific Membrane Antigen (PSMA) has paved the way for personalized medicine in prostate cancer (PCa) patients. This review aims to highlight the role of PSMA targeting antibodies in PCa, for diagnostic and therapeutic purposes. Recent findings PSMA Positron Emission Tomography/Computed Tomography has been a game changer in the diagnosis of PCa in the recent decade. Two anti-PSMA monoclonal antibodies have been studied in PCa: 7E11-C35 (limited use) and J591. J591 antibody was used for diagnostic purposes coupled with different radionuclides. Most importantly, it was combined to numerous therapeutic radionuclides such as Lutetium-177 (Lu-177), Yttrium-90 (Y-90), Indium-111 (In-111), and Actinium-225 (Ac-225). It was also conjugated to drugs forming antibody-drug conjugates (e.g. MLN2704 and PSMA-ADC). These compounds were tested in recent phase I/II clinical trials. PSMA targeting antibodies are very promising for further clinical investigation and continue to be a momentous research area, for both imaging and therapeutic settings. Although some clinical trials resulted in unfavorably safety profiles for some antibodies, they validated PSMA as a crucial immunoconjugate target

    COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor|COVID-19 et la susceptibilité du sexe masculin: le rôle de l'ACE2, la TMPRSS2 et le récepteur aux androgènes

    No full text
    COVID-19 is the pandemic that hit the world starting December 2019. Recent studies and international statistics have shown an increased prevalence, morbidity as well as mortality of this disease in male patients compared to female patients. The aim of this brief communication is to describe the pathophysiology of this sex-discrepancy, based on the infectivity mechanism of the coronavirus including the Angiotensin-Converting Enzyme 2 (ACE2), the Type II transmembrane Serine Protease (TMPRSS2), and the androgen receptor. This could help understand the susceptibility of urological patients, especially those receiving androgen deprivation therapy for prostate cancer, and testosterone replacement therapy. (C) 2020 Elsevier Masson SAS. All rights reserved
    • …
    corecore